EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抱爪式对接机构捕获缓冲系统动力学仿真研究

沈涛 张崇峰 王卫军 冯文博 邱华勇

沈涛, 张崇峰, 王卫军, 冯文博, 邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究[J]. 力学学报, 2020, 52(6): 1590-1598. doi: 10.6052/0459-1879-20-108
引用本文: 沈涛, 张崇峰, 王卫军, 冯文博, 邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究[J]. 力学学报, 2020, 52(6): 1590-1598. doi: 10.6052/0459-1879-20-108
Shen Tao, Zhang Chongfeng, Wang Weijun, Feng Wenbo, Qiu Huayong. DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598. doi: 10.6052/0459-1879-20-108
Citation: Shen Tao, Zhang Chongfeng, Wang Weijun, Feng Wenbo, Qiu Huayong. DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598. doi: 10.6052/0459-1879-20-108

基于抱爪式对接机构捕获缓冲系统动力学仿真研究

doi: 10.6052/0459-1879-20-108
详细信息
    作者简介:

    1) 张崇峰,研究员,主要研究方向:对接机构技术研究,E-mail: Zhcf008@139.com

    通讯作者:

    张崇峰

  • 中图分类号: V19,TP391

DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM

  • 摘要: 现有在轨服务的对接机构由于其尺寸大、结构复杂、对接目标单一等局限性因素,无法很好地为后续我国探月工程任务提供有力支撑,且受限于运载能力,对接机构的轻量化也是必不可少的一项环节.为研究可服务于未来月球空间站以及载人登月等高轨道任务的对接机构,设计了一种新型抱爪式对接机构,其采用异体同构周边式构型,可以实现主/被动飞行器之间的互换.利用 V 型槽与爪钩等结构部件实现飞行器对接过程中的捕获以 及能量消耗功能,从而实现两飞行器之间的稳固联接.该对接机构具备尺寸小、重量轻、结构简单、功能易实现等优势. 对其捕获缓冲系统进行了动力学分析,计算了缓冲元器件的参数对其捕获性能的影响,在 ADAMS 完成了数字虚拟样机的建立,结合实际两种典型的对接初始条件工况进行了仿真研究.研究结果表明,两种工况下的对接过程能量消耗满足设计要求,能够以较小的 V 型槽的碰撞力完成捕获,结果证明了捕获缓冲系统的可行性以及该构型对接机构具备较好实现任务的能力.

     

  • [1] 张崇峰, 刘志. 空间对接机构综述. 上海航天, 2016,33(5):1-11
    [1] ( Zhang Chongfeng, Liu Zhi. Review of space docking mechanism and its technology. Aerospace Shanghai, 2016,33(5):1-11 (in Chinese))
    [2] 沈晓凤, 曾令斌, 靳永强 等. 在轨组装技术研究现状与发展趋势. 载人航天, 2017,23(2):228-235,244
    [2] ( Shen Xiaofeng, Zen Linbin, Jin Yongqiang, et al. Status and prospect of on-orbit assembly technology. Manned Spaceflight, 2017,23(2):228-235, 244 (in Chinese))
    [3] Saunders C, Lobb D, Sweeting M, et al. Building large telescopes in orbit using small satellites. Acta Astronautica, 2017,141:183-195
    [4] 蒋波, 熊西军, 彭志会 等. 国际空间站物资管理系统的发展趋势及建议. 遥测遥控, 2012,33(2):1-6
    [4] ( Jiang Bo, Xiong Xijun, Peng Zhihui, et al. Development and suggestion of inventory management system for International Space Station. Journal of Telemetry, Tracking and Command, 2012,33(2):1-6 (in Chinese))
    [5] 张崇峰, 陈宝东, 郑云青 等. 航天器对接机构. 北京: 科学出版社, 2016: 187-217
    [5] ( Zhang Chongfeng, Chen Baodong, Zheng Yunqing, et al. Space Docking Mechanism. Beijing: Science Press, 2016: 187-217(in Chinese))
    [6] 陈萌, 肖余之, 张涛. 空间服务与操控中的人工智能技术. 载人航天, 2018,24(3):285-291
    [6] ( Chen Meng, Xiao Yuzhi, Zhang Tao. Artifical intelligence technology in space servicing and manipulation. Manned Spaceflight, 2018,24(3):285-291 (in Chinese))
    [7] Chiu SW. Promoting international co-operation in the age of global space governance - A study on on-orbit servicing operations. Acta Astronautica, 2019,161:375-381
    [8] 侯鹏飞. 面向航天器在轨维修任务的机械臂及其地面实验研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2015
    [8] ( Hou Pengfei. Research on manipulator for on-orbit servicing tasks of spacecraft and its ground test. [Master Thesis]. Harbin: Harbin Institute of Technology, 2015 (in Chinese))
    [9] Ge XY, Zhou QX, Liu ZQ. Assessment of space station on-orbit maintenance task complexity. Reliability Engineering and System Safety, 2019,193:106661
    [10] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [10] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [11] 孙泽洲, 孟林智. 中国深空探测现状及持续发展趋势. 南京航空航天大学学报, 2015,47(6):785-791
    [11] ( Sun Zezhou, Meng Linzhi. Current situation and sustainable development trend of deep space exploration in China. Journal of Nanjing University of Aeronautics and Astronautics, 2015,47(6):785-791 (in Chinese))
    [12] Stanley GL, Ralph PH. Crew autonomy for deep space exploration: lessons from the antarctic search for meteorites. Acta Astronautica, 2014,94(1):83-92
    [13] 彭祺擘, 李桢, 李海阳. 载人登月飞行方案研究. 上海航天, 2012,29(5):14-19
    [13] ( Peng Qibo, Li Zhen, Li Haiyang. Analysis on manned lunar mission flight mode. Aerospace Shanghai, 2012,29(5):14-19 (in Chinese))
    [14] Wang XH, Mao LH, Yue TX, et al. Manned lunar landing mission scale analysis and flight scheme selection based on mission architecture matrix. Acta Astronautica, 2018,152:385-395
    [15] 胡海岩. 动力学与控制论力学系统的自由度. 力学学报, 2018,50(5):1135-1144
    [15] ( Hu Haiyan. On the degrees of freedom of a mechanical system. Chinese Journal of Theoretical and Applied Mechani, 2018,50(5):1135-1144 (in Chinese))
    [16] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [16] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [17] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [17] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [18] 王闯, 邓宗全, 高海波 等. 国内外月球着陆器研究状况. 导弹与航天运载技术, 2006(4):31-36
    [18] ( Wang Chuang, Deng Zongquan, Gao Haibo, et al. Development status of lunar landers. Missile and Space Vehicle, 2006(4):31-36 (in Chinese))
    [19] Cho D, Lee D, Bang H. Initial guess structure for the optimal lunar landing trajectory// The Proceedings of 2010 Asia-Pacific International Symposium on Aerospace Technology(Vol. 2), 2010: 4
    [20] 王赤, 张贤国, 徐欣锋 等. 中国月球及深空空间环境探测. 深空探测学报, 2019,6(2):105-118
    [20] ( Wang Chi, Zhang Xianguo, Xu Xinfeng, et al. The lunar and deep space enviroment exploration in China. Journal of Deep Space Exploration, 2019,6(2):105-118 (in Chinese))
    [21] 朱仁璋, 郑安波, 娄汉文 等. 航天器联接系统发展综述. 载人航天, 2007, (1):13-23
    [21] ( Zhu Renzhang, Zheng Anbo, Lou Hanwen, et al. A review of the development of spacecraft docking system. Manned Spaceflight, 2007, (1):13-23 (in Chinese))
    [22] Dick BD, Oesch C, Rupp TW. Linear actuator for the NASA Docking System. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005413.pdf, [2017-4-13]
    [23] Motaghedi P, Ghofranian S. Feasibility of the SIMAC for the NASA Docking System. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009916.pdf, [2014-9-16]
    [24] Motaghedi P, Ghofranian S. Feasibility of the soft impact mating attenuation concept for the NASA docking system. Reports on Progress in Physics, 2013,63(62):1573-1659
    [25] 叶鹏达, 尤晶晶, 仇鑫 等. 并联机器人运动性能的研究现状及发展趋势. 南京航空航天大学学报, 2020,52(3):363-377
    [25] ( Ye Pengda, You Jinjin, Qiu Xin, et al. Research status and development trend of kinematic performance of parallel robots. Journal of Nanjing University of Aeronautics and Astronautics, 2020,52(3):363-377 (in Chinese))
    [26] Feldman A, Caporicci M, Gracia O. et al. Advances in intelligent health reasoning and its application to IBDM// Aerospace Conference, 2007 IEEE, 2007. 219-230
    [27] Hardt M, Ayuso A, Cocho D, et al. Multibody dynamic considerations in the redesign of the international berthing and docking mechanism (IBDM)// 1st ESA Workshop on Multibody Dynamics for Space Applications. 2010
    [28] 刘志, 崔宇新, 张崇峰. 国际对接系统标准. 载人航天, 2014,20(2):152-158
    [28] ( Liu Zhi, Cui Xinyu, Zhang Chongfeng. Study on international docking system standard. Manned Spaceflight, 2014,20(2):152-158 (in Chinese))
    [29] Marco B, Alessandro C, Federico C, et al. Flexible electromagnetic leash docking system experiment from design to microgravity testing// 66th International Astronautical Congress, Jerusalem, Israel: IAC-15, 2015: 1-12
    [30] Lorenzo O, Alessandro F. Design and test of a semiandrogynous docking mechanism for small satellites. Acta Astronautica, 2016,122:219-230
    [31] 徐敏. 空间弱撞击对接机构设计与仿真分析. [硕士论文]. 南京: 南京航空航天大学, 2017
    [31] ( Xu Ming. Design and simulation analysis of a low impact docking System. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese))
    [32] 解增辉. 弱撞击空间对接机构及其主动柔顺控制的研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2017
    [32] ( Xie Zenghui. Research on the low impact space docking mechanism and active compliant control. [Master Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [33] 张玲瑄, 邵济明, 邹怀武 等. 弱撞击式对接机构力传递及运动性能分析与优化. 载人航天, 2015,21(5):462-467
    [33] ( Zhang Ling- xuan, Shao Jiming, Zhou Huaiwu, et al. Analysis and optimization of force transmissibility and kinematic performance of low impact docking mechanism. Manned Spaceflight, 2015,21(5):462-467 (in Chinese))
    [34] 姚文莉, 岳嵘. 有争议的碰撞恢复系数研究进展. 振动与冲击, 2015,34(19):43-48
    [34] ( Yao Wenli, Yue Rong. Advance in controversial restitution coefficient study for impact problems. Journal of Vibration and Shock, 2015,34(19):43-48 (in Chinese))
    [35] Galeani S, Menini L, Tornambè A. Identification of the relationship between the coefficient of restitution and the impact velocity. IFAC Proceedings Volumes, 2003,36(2):275-280
  • 加载中
计量
  • 文章访问数:  534
  • HTML全文浏览量:  71
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回