EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自行车动力学建模及稳定性分析研究综述

王囡囡 熊佳铭 刘才山

王囡囡, 熊佳铭, 刘才山. 自行车动力学建模及稳定性分析研究综述[J]. 力学学报, 2020, 52(4): 917-927. doi: 10.6052/0459-1879-20-077
引用本文: 王囡囡, 熊佳铭, 刘才山. 自行车动力学建模及稳定性分析研究综述[J]. 力学学报, 2020, 52(4): 917-927. doi: 10.6052/0459-1879-20-077
Wang Nannan, Xiong Jiaming, Liu Caishan. REVIEW OF DYNAMIC MODELING AND STABILITY ANALYSIS OF A BICYCLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927. doi: 10.6052/0459-1879-20-077
Citation: Wang Nannan, Xiong Jiaming, Liu Caishan. REVIEW OF DYNAMIC MODELING AND STABILITY ANALYSIS OF A BICYCLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927. doi: 10.6052/0459-1879-20-077

自行车动力学建模及稳定性分析研究综述

doi: 10.6052/0459-1879-20-077
基金项目: 1)国家自然科学基金(11702002);国家自然科学基金(11932001)
详细信息
    通讯作者:

    刘才山

  • 中图分类号: TU411.01

REVIEW OF DYNAMIC MODELING AND STABILITY ANALYSIS OF A BICYCLE

  • 摘要: 自行车发明于两个多世纪前. 这一看似古老的交通工具在为人们提供出行便利的同时,其独特的运动特性及动力学性质 也吸引了来自数学、物理及力学等多个学科相关学者的兴趣. 大体上,自行车可以描述为具有 7 个自由度和 4 个非完整约束的多刚体系统. 但由于前后车轮之间复杂的运动耦合关系,使得自行车的约束方程和动力学模型变得异常复杂, 导致对自行车的稳定性存在一些模糊认识. 本文针对经典的 Carvallo-Whipple 自行车构型,系统回顾了历史上自行车动力学研究中的相关问题,这些问题包括:(1) 自行车在复杂曲面上的几何约束和非完整约束的数学描述;(2) 自行车系统内在的对称性及守恒量; (3) 自行车动力学的各类建模方法; (4) 自行车运动的相对平衡点及稳定性分析,包括水平面上的匀速直线运动及旋转对称曲面上的匀速圆周运动;(5) 影响自行车自稳定性的结构参数等. 本文最后对自行车动力学实验和控制方面的研究工作进行了回顾,并对自行车今后的研究给出了展望.

     

  • [1] Herlihy DV. Bicycle: The History. New Haven, CT: Yale University Press, 2004
    [2] Schwab AL, Meijaard JP. A review on bicycle dynamics and rider control. Vehicle System Dynamics, 2013,51(7):1059-1090
    [3] Rankine WJM. On the dynamical principles of the motion of velocipedes. The Engineer, 1869,28(79):129
    [4] Bourlet C. étude théorique sur la bicyclette. Bulletin de la Société Mathématique de France, 1899,27:76-96
    [5] Boussinesq J. Aper?u sur la théorie de la bicyclette. Journal de Mathématiques Pures et Appliquées, 1899,5:117-136
    [6] Boussinesq J. Complément à une étude récente concernant la théorie de la bicyclette: Influence, sur l'équilibre, des mouvements latéraux spontanés du cavalier. Journal de Mathématiques Pures et Appliquées, 1899,5:217-232
    [7] Klein F, Sommerfeld A, Noether FAE. über die Theorie des Kreisels: Einführung in die Kinematik und Kinetik des Kreisels. BG Teubner, 1910
    [8] Timoshenko S, Young DH. Advanced Dynamics NewYork, NY, Toronto and London: McGraw-Hill Book Company, 1948
    [9] Carvallo E. Théorie du movement du monocycle, part 2: Théorie de la bicyclette. J. Ec. Polytech. Paris, 1901,6:1-118.
    [10] Whipple FJW. The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 1899,30(120):312-348
    [11] Bouasse H. Cours De Mécanique Rationnelle Et Expérimentale, Librairie Ch . Delagrave, Paris, 1910
    [12] Sharp RS. The stability and control of motorcycles. Journal of Mechanical Engineering Science, 1971,13(5):316-329
    [13] Psiaki ML. Bicycle stability: A mathematical and numerical analysis. [B.A. Thesis]. Princeton: Princeton University, 1979
    [14] Nemark JI, Fufaev NA. Dynamics of nonholonomic systems. American Mathematical Soc., 2004
    [15] Hand RS. Comparisons and stability analysis of linearized equations of motion for a basic bicycle model. [Master Thesis]. Ithaca: Cornell University, 1988
    [16] Papadopoulos JM. Bicycle steering dynamics and self-stability: a summary report on work in progress. Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987
    [17] Meijaard JP, Papadopoulos JM, Ruina A, et al. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007,463(2084):1955-1982
    [18] Basu-Mandal P, Chatterjee A, Papadopoulos JM. Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007,463(2084):1983-2003
    [19] Peterson DL, Gede G, Hubbard M. Symbolic linearization of equations of motion of constrained multibody systems. Multibody System Dynamics, 2015,33(2):143-161
    [20] Bloch AM. Nonholonomic mechanics//Nonholonomic Mechanics and Control. New York, NY: Springer, 2003: 207-276
    [21] Getz NH, Marsden JE. Control for an autonomous bicycle//Proceedings of 1995 IEEE International Conference on Robotics and Automation. IEEE, 1995,2:1397-1402
    [22] ?str?m KJ, Murray RM. Feedback Systems: An Introduction for Scientists and Engineers. Princeton: Princeton University Press, 2010
    [23] Hung, NB, Jaewon S, Lim O. A study of the effects of input parameters on the dynamics and required power of an electric bicycle. Applied Energy, 2017,204:1347-1362.
    [24] Baquero-Suárez M, Cortés-Romero J, Arcos-Legarda J, et al. A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody System Dynamics, 2019,45(1):7-35
    [25] Moore JK. Human control of a bicycle. Davis, CA: University of California, 2012
    [26] Kooijman JDG, Meijaard JP, Papadopoulos JM, et al. A bicycle can be self-stable without gyroscopic or caster effects. Science, 2011,332(6027):339-342
    [27] Xiong J, Wang N, Liu C. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 2020,36(1):220-233
    [28] Xiong J, Wang N, Liu C. Stability analysis for the Whipple bicycle dynamics. Multibody System Dynamics, 2020,48(3):311-335
    [29] Shi D, Berchenko-Kogan Y, Zenkov DV, et al. Hamel's formalism for infinite-dimensional mechanical systems. Journal of Nonlinear Science, 2017,27(1):241-283
    [30] Kang H, Liu C, Jia YB. Inverse dynamics and energy optimal trajectories for a wheeled mobile robot. International Journal of Mechanical Sciences, 2017,134:576-588
    [31] Peterson D, Hubbard M. Analysis of the Holonomic Constraint in the Whipple Bicycle Model (P267)// The Engineering of Sport 7. Paris: Springer, 2008: 623-631
    [32] Peterson DL. Bicycle dynamics: modelling and experimental validation. Davis: University of California, 2013
    [33] Wang EX, Zou J, Xue G, et al. Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Transactions on Intelligent Transportation Systems, 2015,16(4):2236-2246
    [34] Zhao Z, Liu C. Contact constraints and dynamical equations in Lagrangian systems. Multibody System Dynamics, 2016,38(1):77-99
    [35] 胡海岩. 动力学与控制论力学系统的自由度. 力学学报, 2018,50(5):1135-1144
    [35] ( Hu Haiyan. On the degrees of freedom of a mechanical system. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1135-1144 (in Chinese))
    [36] Doria A, Roa S, Mu?oz L. Stability analysis of bicycles by means of analytical models with increasing complexity. Mechanical Sciences, 2019,10(1):229-241
    [37] 刘才山. 分析动力学中的基本方程与非完整约束. 北京大学学报 (自然科学版), 2016,52(4):756-766
    [37] ( Liu Caishan. The fundamental equations in analytical mechanics for nonholonomic systems. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):756-766 (in Chinese))
    [38] Huang Y, Liao Q, Wei S, et al. Dynamic modeling of a bicycle robot with front-wheel drive based on Kane's method// The 2010 IEEE International Conference on Information and Automation. IEEE, 2010: 758-764
    [39] Meijaard JP, Schwab AL. Linearized equations for an extended bicycle mode l//III European Conference on Computational Mechanics. Springer, Dordrecht, 2006: 772-772
    [40] Boyer F, Porez M, Mauny J. Reduced dynamics of the non-holonomic Whipple bicycle. Journal of Nonlinear Science, 2018,28(3):943-983
    [41] Escalona JL, Recuero AM. A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody System Dynamics, 2012,27(3):383-402
    [42] Schwab AL, Meijaard JP, Papadopoulos JM. Benchmark results on the linearized equations of motion of an uncontrolled bicycle. Journal of Mechanical Science and Technology, 2005,19(1):292-304
    [43] Cain SM, Perkins NC. Comparison of experimental data to a model for bicycle steady-state turning. Vehicle System Dynamics, 2012,50(8):1341-1364
    [44] Kooijman JDG, Schwab AL, Meijaard JP. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 2008,19(1-2):115-132
    [45] Hubbard M. Lateral dynamics and stability of the skateboard. J Appl Mech, 1979,46(4):931-936
    [46] Marsden JE, Ratiu TS. Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems. Springer Science & Business Media, 2013
    [47] Bloch AM, Krishnaprasad PS, Marsden JE, et al. Nonholonomic mechanical systems with symmetry. Archive for Rational Mechanics and Analysis, 1996,136(1):21-99
    [48] Zenkov DV. Integrability and stability of nonholonomic systems. The Ohio State University, 1998
    [49] 王晓军, 吕敬, 王琪. 含摩擦滑移铰平面多刚体系统动力学的数值算法. 力学学报, 2019,51(1):209-217
    [49] ( Wang Xiaojun, Lü Jing, Wang Qi. A numerical method for dynamics of planar multi- rigid-body system with frictional translational joints based on lugre friction model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):209-217 (in Chinese))
    [50] Schwab AL, Kooijman JDG, Meijaard JP. Some recent developments in bicycle dynamics and control// 4th European Conference on Structural Control, ECSC 2008, Russian Academy of Sciences, 2008: 695-702
    [51] Sharp RS. On the stability and control of the bicycle. Applied Mechanics Reviews, 2008,61(6):060803
    [52] Lennartsson A. Efficient multibody dynamics. KTH Royal Institute of Technology, 1999
    [53] Astrom KJ, Klein RE, Lennartsson A. Bicycle dynamics and control: Adapted bicycles for education and research. IEEE Control Systems Magazine, 2005,25(4):26-47
    [54] Kooijman JDG, Schwab AL. A review on bicycle and motorcycle rider control with a perspective on handling qualities. Vehicle System Dynamics, 2013,51(11):1722-1764
    [55] Zhao Z, Wang N, Liu C. Jump rule for edge impacts of rolling prisms. Theoretical and Applied Mechanics Letters, 2018,8(6):425-430
    [56] Doria A, Roa Melo SD. On the influence of tyre and structural properties on the stability of bicycles. Vehicle System Dynamics, 2018,56(6):947-966
    [57] Klinger F, Nusime J, Edelmann J, et al. Wobble of a racing bicycle with a rider hands on and hands off the handlebar. Vehicle System Dynamics, 2014,52(1):51-68
    [58] Pl?chl M, Edelmann J, Angrosch B, et al. On the wobble mode of a bicycle. Vehicle System Dynamics, 2012,50(3):415-429
    [59] Klinger F, Nusime J, Edelmann J, et al. Wobble of a racing bicycle with a rider hands on and hands off the handlebar. Vehicle System Dynamics, 2014,52(sup1):51-68
    [60] Doria A, Tognazzo M, Cusimano G, et al. Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics. Vehicle System Dynamics, 2013,51(3):405-420
    [61] Souh B. Influence of tire side forces on bicycle self-stability. Journal of Mechanical Science and Technology, 2015,29(8):3131-3140
    [62] Schwab AL, Dialynas G, Happee R. Some effects of crosswind on the lateral dynamics of a bicycle. Multidisciplinary Digital Publishing Institute Proceedings, 2018,2(6):218
    [63] Franke G, Suhr W, Rie? F. An advanced model of bicycle dynamics. European Journal of Physics, 1990,11(2):116
    [64] 李彦敏, 章婷婷, 梅凤翔. 用具有负定矩阵的梯度系统构造稳定的变质量力学系统. 力学学报, 2018,50(1):109-113
    [64] ( Li Yanmin, Zhang Tingting, Mei Fengxiang. Stable variable mass mechanical systems constructed by using a gradient system with negative-definite matrix. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):109-113 (in Chinese))
    [65] Murray RM, Li Z, Sastry SS, et al. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994
    [66] Strogatz SH. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, 2018
    [67] Carr J. Applications of Centre Manifold Theory. Springer Science & Business Media, 2012
    [68] Meijaard JP, Papadopoulos JM, Ruina A, et al. Historical review of thoughts on bicycle self-stability. Cornell University, Ithaca, NY, USA, 2011
    [69] Appell P. Traité de mécanique rationnelle: Dynamique des systèmes. Gauthier-Villars, 1896
    [70] Klein F, Sommerfeld A. über die theorie des kreisels. BG Teubner, 1898
    [71] Grammel R. Der Kreisel: Seine theorie und seine Anwendungen. Springer, 1920
    [72] Jones DEH. The stability of the bicycle. Physics Today, 1970,23(4):34-40
    [73] 刘延柱. 关于自行车的稳定性. 力学与实践, 2012,34(2):90-93
    [73] ( Liu Yanzhu. The stability of a bicycle. Mechanics in Engineering, 2012,34(2):90-93 (in Chinese))
    [74] 刘延柱. 自行车的受控运动. 力学与实践, 1995,17(4):39-42
    [74] ( Liu Yanzhu. The controlled movement of a bicycle. Mechanics in Engineering, 1995,17(4):39-42 (in Chinese))
    [75] 刘延柱. 自稳定的无人自行车. 力学与实践, 2015,37(1):146-148
    [75] ( Liu Yanzhu. Self-stable bicycle without rider. Mechanics in Engineering, 2015,37(1):146-148 (in Chinese))
    [76] Tak TO, Won JS, Baek GY. Design sensitivity analysis of bicycle stability and experimental validation// Proceedings of the Bicycle and Motorcycle Dynamics Symposium on the Dynamics and Control of Single Track Vehicles, 2010: 20-22
    [77] Roland RD, Lynch JP. Bicycle Dynamics: Tire Characteristics and Rider Modeling. Cornell Aeronautical Laboratory, 1972
    [78] Roland RD. Computer simulation of bicycle dynamics// Proceedings of the ASME Symposium Mechanics and Sport, 1973: 35-83
    [79] Roland RD, Massing DE. A digital computer simulation of bicycle dynamics. Cornell Aeronautical Laboratory, 1971
    [80] Miyagishi S, Kageyama I, Takama K, et al. Study on construction of a rider robot for two-wheeled vehicle. JSAE Review, 2003,24(3):321-326
    [81] Kooijman JDG, Schwab AL, Meijaard J P. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 2008,19(1-2):115-132
    [82] Escalona JL, Klodowski A, Munoz S. Validation of multibody modeling and simulation using an instrumented bicycle: from the computer to the road. Multibody System Dynamics, 2018,43(4):297-319
    [83] Lowell J, McKell HD. The stability of bicycles. Amer J Physics, 1982,50(12):1106-1112
    [84] 刘延柱. 再谈无人自行车的自稳定性. 力学与实践, 2020,42(1):116-118
    [84] ( Liu Yanzhu. Revisit of self-stabilization of unmanned bicycle. Mechanics in Engineering, 2020,42(1):116-118 (in Chinese))
    [85] Keo L, Yoshino K, Kawaguchi M, et al. Experimental results for stabilizing of a bicycle with a flywheel balancer// 2011 IEEE international conference on robotics and automation, IEEE, 2011: 6150-6155
    [86] Yetkin H, Kalouche S, Vernier M, et al. Gyroscopic stabilization of an unmanned bicycle// 2014 American Control Conference, IEEE, 2014: 4549-4554
    [87] Yamakita M, Utano A, Sekiguchi K. Experimental study of automatic control of bicycle with balancer// 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 5606-5611
    [88] Tanaka Y, Murakami T. Self sustaining bicycle robot with steering Controller// Advanced Motion Control, 2004. AMC'04. The 8th IEEE International Workshop on, IEEE, 2004: 193-197
    [89] Keo L, Yamakita M. Controlling balancer and steering for bicycle Stabilization// Intelligent Robots and Systems, 2009, IROS 2009. IEEE/RSJ International Conference on IEEE, 2009, 4541-4546
    [90] Owczarkowski A, Horla D, Kozierski P, et al. Dynamic modeling and simulation of a bicycle stabilized by LQR control. Methods and Models in Automation and Robotics (MMAR)// 2016 21st International Conference on IEEE, 2016: 907-911
    [91] Anjumol MA, Jisha VR. Optimal stabilization and straight line tracking of an electric bicycle// 2014 International Conference on Power Signals Control and Computations (EPSCICON), IEEE, 2014: 1-6
    [92] Zhang Y, Yi J. Dynamic modeling and balance control of human/bicycle Systems// Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on IEEE, 2010: 1385-1390
    [93] Chen CK, Dao TS. Fuzzy control for equilibrium and roll-angle tracking of an unmanned bicycle. Multibody System Dynamics, 2006,15(4):321-346
    [94] Rice RS, Roland RD. An evaluation of the performance and handling qualities of bicycles. Cornell Aeronautical Laboratory, 1970
    [95] D?hring E. Die Stabilit?t von Einspurfahrzeugen. Forschung auf dem Gebiet des Ingenieurwesens A, 1955,21(2):50-62
    [96] Eaton DJ. Man-machine dynamics in the stabilization of single-track vehicles. University Microfilms, 1987
    [97] Biral F, Bortoluzzi D, Cossalter V, et al. Experimental study of motorcycle transfer functions for evaluating handling. Vehicle System Dynamics, 2003,39(1):1-25
    [98] Cossalter V, Lot R, Maggio F. The modal analysis of a motorcycle in straight running and on a curve. Meccanica, 2004,39(1):1-16
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览量:  423
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回