EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2:1内共振条件下变转速预变形叶片的非线性动力学响应

顾伟 张博 丁虎 陈立群

顾伟, 张博, 丁虎, 陈立群. 2:1内共振条件下变转速预变形叶片的非线性动力学响应[J]. 力学学报, 2020, 52(4): 1131-1142. doi: 10.6052/0459-1879-20-060
引用本文: 顾伟, 张博, 丁虎, 陈立群. 2:1内共振条件下变转速预变形叶片的非线性动力学响应[J]. 力学学报, 2020, 52(4): 1131-1142. doi: 10.6052/0459-1879-20-060
Gu Wei, Zhang Bo, Ding Hu, Chen Liqun. NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142. doi: 10.6052/0459-1879-20-060
Citation: Gu Wei, Zhang Bo, Ding Hu, Chen Liqun. NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142. doi: 10.6052/0459-1879-20-060

2:1内共振条件下变转速预变形叶片的非线性动力学响应

doi: 10.6052/0459-1879-20-060
基金项目: 1)国家自然科学基金项目(11702033);国家自然科学基金项目(11872159);中央高校基本科研业务费专项资金项目(300102120106);中央高校基本科研业务费专项资金项目(300102128107);上海市教委创新项目(2017-01-07-00-09-E00019)
详细信息
    作者简介:

    2)顾伟,硕士研究生,主要研究方向:非线性动力学与振动控制. E-mail: dynast@shu.edu.cn

    通讯作者:

    张博

  • 中图分类号: O317$^+$.2

NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE

  • 摘要: 在工程实际中,涡轮机叶片的转速在很多应用场景下不是一个定常值,比如发动机在启动、变速、停机等工况下,转子输入与输出功率失衡,伴随产生扭振,产生速度脉冲. 另外,由于服役环境、安装误差等因素会引起叶片在所难免的预变形. 本文主要研究预变形叶片,在变转速条件下的非线性动力学行为. 考虑叶片转速由一定常转速和一简谐变化的微小扰动叠加而成. 应用拉格朗日原理得到变转速叶片的动力学控制方程,并采用假设模态法将偏微分方程转为常微分方程,通过引入无量纲,使方程更具有一般性. 运用多尺度方法求解了该参激振动系统,得到了在 2:1 内共振情形下的平均方程,进而获得系统的稳态响应. 详细研究温度梯度、阻尼以及转速扰动幅值等系统参数对叶片动力学响应的影响规律,同时考察了立方项在 2:1 内共振下对方程的影响. 对原动力方程进行正向、反向扫频积分来观察其跳跃现象,并对解析解进行验证. 结果发现参数的变化对叶片均有不同程度影响,在 2:1 内共振下立方项对系统响应的影响很小,解析解与数值解吻合很好.

     

  • [1] Swaminathan M, Rao JS. Vibrations of rotating,pretwisted and tapered blades. Mechanism and Machine Theory, 1977,12:331-337
    [2] Yang HD, Yang RM. Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA Journal, 1981,19(11):1459-1466
    [3] Yoo HH, Shin SH. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998,212(5):807-828
    [4] Yoo HH, Kwak JY, Chung J. Vibration analysis of rotating pre-twisted blades with a concentrated mass. Journal of Sound and Vibration, 2001,240(5):891-908
    [5] Yoo HH, Park JH, Park J. Vibration analysis of rotating pre-twisted blades. Computers & Structures, 2001,79(19):1811-1819
    [6] 蔡国平, 洪嘉振. 非惯性系下柔性悬臂梁的振动主动控制. 力学学报, 2003,35(6):744-751
    [6] ( Cai Guoping, Hong Jiazhen. Active vibration control of a cantilever beam in non-inertial system. Chinese Journal of Theoretical and Applied Mechanics, 2003,35(6):744-751 (in Chinese))
    [7] Yang JB, Jiang LJ, Chen DCH. Dynamic modelling and control of a rotating euler-bernoulli beam. Journal of Sound and Vibration, 2004,274(3-5):863-875
    [8] 姜静, 韩广才. 考虑弯扭耦合旋转叶片的动力学分析. 佳木斯大学学报 (自然科学版), 2011,29(4):560-563
    [8] ( Jiang Jing, Han Guangcai. Dynamic analysis of rotating blade considering the couple of bending and torsion, Journal of Jiamusi University, 2011,29(4):560-563 (in Chinese))
    [9] Inoue T, Ishida Y, Kiyohara T. Nonlinear vibration analysis of the wind turbine blade (occurrence of the superharmonic resonance in the out of plane vibration of the elastic blade). Journal of Vibration and Acoustics-Transactions of the ASME, 2012,134(3):031009
    [10] Ramakrishnan V, Feeny BF. In-plane nonlinear dynamics of wind turbine Blades// Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2011, Vol 1, Pts A and B, 2012: 761-769
    [11] Ramakrishnan V, Feeny BF. Resonances of a forced mathieu equation with reference to wind turbine blades. Journal of Vibration and Acoustics-Transactions of the Asme, 2012,134(6):064501
    [12] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    [12] ( Li Guoqiang, Zhang Weiguo, Chen Li, et al, Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765 (in Chinese))
    [13] 赵国威, 吴志刚. 应变能中耦合项对旋转悬臂梁振动频率的影响. 力学学报, 2015,47(2):362-366
    [13] ( Zhao Guowei, Wu Zhigang. Effects of coupling terms in strain energy on frequency of a rotating cantilever beam. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):362-366 (in Chinese))
    [14] 杨鄂川, 李映辉, 赵翔 等. 含旋转运动效应裂纹梁横向振动特性的研究. 应用力学学报, 2017,34(6):1160-1165
    [14] ( Yang Echuan, Li Yinghui, Zhang Xiang, et al. Study on transverse vibration characteristics of cracked beams with rotating motion effect. Chinese Journal of Applied Mechanics, 2017,34(6):1160-1165 (in Chinese))
    [15] Oh Y, Yoo HH. Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion. Journal of Sound and Vibration, 2018,431:20-39
    [16] Tian JJ, Su JP, Zhou K, et al. A modified variational method for nonlinear vibration analysis of rotating beams including coriolis effects. Journal of Sound and Vibration, 2018,426:258-277
    [17] 李炳强, 马辉, 曾劲 等. 转子-叶片系统非线性振动和动态稳定性分析. 振动与冲击, 2019,38(6):15-22
    [17] ( Li Bingqiang, Ma Hui, Ceng Jin, et al, Nonlinear vibration and dynamic stability analysis of a rotor-blade system. Journal of Vibration and Shock, 2019,38(6):15-22 (in Chinese))
    [18] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    [18] ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    [19] Kammer DC, Jr Schlack AL. Effects of nonconstant spin rate on the vibration of a rotating beam. Journal of Applied Mechanics, Transactions ASME, 1987,54(2):305-310
    [20] Young TH. Dynamic resppnse of a pretwisted, tapered beam with non-constant rotating speed. Journal of Sound and Vibration, 1991,150(3):435-446
    [21] Yang SM, Tsao SM. Dynamics of a pretwisted blade under nonconstant rotating speed. Computers & Structures, 1997,62(4):643-651
    [22] 张伟, 冯景, 姚明辉 等. 水平轴风机旋转叶片非线性动力学模型的建立及分析. 科技导报, 2010,28(5):40-44
    [22] ( Zhang Wei, Feng Jing, Yao Minghui, et al. Model establishment and nonlinear dynamic analysis of the rotating horizontal axis wind turbine blade. Review of Science and Technology, 2010,28(5):40-44 (in Chinese))
    [23] Yao MH, Chen YP, Zhang W. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dynamics, 2011,68(4):487-504
    [24] Yao MH, Zhang W, Chen YP. Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mechanica, 2014,225(12):3483-3510
    [25] Georgiades F. Nonlinear dynamics of a spinning shaft with non-constant rotating speed. Nonlinear Dynamics, 2017,93(1):89-118
    [26] 张伟, 袁双, 郭翔鹰. 变截面旋转叶片的非线性动力学研究. 动力学与控制学报, 2018,16(4):309-316
    [26] ( Zhang Wei, Yuan Shuang, Guo Xiangying. Noninear dynamics of rotating blades with variable cross section. Journal of Dynamics and Control, 2018,16(4):309-316 (in Chinese))
    [27] Hu Y, Zhao Y, Wang N, et al. Dynamic analysis of varying speed rotating pretwisted structures using refined beam theories. International Journal of Solids and Structures, 2020,185:292-310
    [28] Zhang B, Li YM. Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dynamics, 2016,86(1):459-478
    [29] Kang D, Wang YL, Zhong JJ, et al. Pre-deformation method for manufactured compressor blade based on load incremental approach. International Journal of Turbo & Jet-Engines, 2017,36(4):1-7
    [30] Zhang B, Zhang YL, Yang XD, et al. Saturation and stability in internal resonance of a rotating blade under thermal gradient. Journal of Sound and Vibration, 2019,440:34-50
    [31] Rao SS. Vibration of Continuous Systems, 2nd ed., Hoboken, NJ, USA: John Wiley & Sons Ltd, 2019: 323-398
    [32] Zhang B, Ding H, Chen LQ. Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure. Nonlinear Dynamics, 2019,98(4):2531-2549
    [33] 张登博, 唐有绮, 陈立群. 非齐次边界条件下轴向运动梁的非线性振动. 力学学报, 2019,51(1):218-227
    [33] ( Zhang Dengbo, Tang Youqi, Chen Liqun. Nonlinear vibration of axially moving beams with nonhomogeneous boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):218-227 (in Chinese))
    [34] Carnegie W, Thomas J. The coupled bending—bending vibration of pretwisted tapered blading. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1972,94(1):255-266
  • 加载中
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  421
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回