EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝合式C/SiC复合材料非线性本构关系及断裂行为研究

曹明月 张启 吴建国 葛敬冉 梁军

曹明月, 张启, 吴建国, 葛敬冉, 梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究[J]. 力学学报, 2020, 52(4): 1095-1105. doi: 10.6052/0459-1879-20-058
引用本文: 曹明月, 张启, 吴建国, 葛敬冉, 梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究[J]. 力学学报, 2020, 52(4): 1095-1105. doi: 10.6052/0459-1879-20-058
Cao Mingyue, Zhang Qi, Wu Jianguo, Ge Jingran, Liang Jun. STUDY ON NONLINEAR CONSTITUTIVE RELATIONSHIP AND FRACTURE BEHAVIOR OF STITCHED C/SiC COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1095-1105. doi: 10.6052/0459-1879-20-058
Citation: Cao Mingyue, Zhang Qi, Wu Jianguo, Ge Jingran, Liang Jun. STUDY ON NONLINEAR CONSTITUTIVE RELATIONSHIP AND FRACTURE BEHAVIOR OF STITCHED C/SiC COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1095-1105. doi: 10.6052/0459-1879-20-058

缝合式C/SiC复合材料非线性本构关系及断裂行为研究

doi: 10.6052/0459-1879-20-058
基金项目: 1)国家自然科学基金(11802018);国家自然科学基金(111732002)
详细信息
    通讯作者:

    葛敬冉

    葛敬冉,梁军

  • 中图分类号: O346.1

STUDY ON NONLINEAR CONSTITUTIVE RELATIONSHIP AND FRACTURE BEHAVIOR OF STITCHED C/SiC COMPOSITES

  • 摘要: C/SiC复合材料具有高比强度、高比模量和优良的热稳定性能等一系列优点, 广泛应用于航空航天领域中. 裂纹扩展进而引起的脆性断裂是其主要失效形式之一, 因而材料的断裂性能分析对材料的结构设计和应用有重要的指导意义. 本文开展了缝合式C/SiC复合材料简单力学试验和断裂试验, 研究了材料在不同载荷下的力学响应及断裂特征. 基于缝合式C/SiC复合材料简单力学试验, 建立了材料宏观非线性损伤本构方程, 并模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 本构方程采用简单函数描述了材料在复杂应力状态下的非线性应力-应变曲线, 并考虑了反向加载过程中造成的裂纹闭合. 基于商业有限元软件ABAQUS, 通过编写UMAT子程序实现非线性损伤本构方程, 采用单个单元验证了建立的本构方程的有效性. 在此基础上, 采用线弹性损伤本构和非线性损伤本构分别模拟了缝合式C/SiC复合材料单边切口梁和双悬臂梁的断裂行为. 采用非线性损伤本构方程模拟的力-位移曲线结果与试验结果更为吻合, 非线性损伤本构预测的失效载荷与试验失效载荷更为接近, 验证了所建立的非线性损伤本构方程的准确性, 为C/SiC复合材料断裂行为的研究提供了借鉴, 为缝合式C/SiC复合材料结构的设计和应用提供了理论基础.

     

  • [1] 陈倩, 张汉哲, 吴钦 等. 复合材料水翼水动力与结构强度特性数值研究. 力学学报, 2019,51(5):1350-1362
    [1] ( Chen Qian, Zhang Hanzhe, Wu Qin, et al. Numerical study on hydrodynamic and structural strength characteristics of composite hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1350-1362 (in Chinese))
    [2] 刘艮, 张伟. 亚音速气流中复合材料悬臂板的非线性振动响应研究. 力学学报, 2019,51(3):912-921
    [2] ( Liu Gen, Zhang Wei. Research on nonlinear vibration response of composite cantilever plate in subsonic airflow. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):912-921 (in Chinese))
    [3] 李伟, 方国东, 李玮洁 等. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019,51(3):835-844
    [3] ( Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior of carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):835-844 (in Chinese))
    [4] Nozawa T, Ozawa K, Choi YB, et al. Determination and prediction of axial/off-axial mechanical properties of SiC/SiC composites. Fusion Engineering and Design, 2012,87(5-6):803-807
    [5] Li J, Jiao G, Wang BD, et al. Damage characteristics and constitutive modeling of the 2D C/Si C composite: Part I-Experiment and analysis. Chinese Journal of Aeronautics, 2014,27(6):1586-1597
    [6] Dassios KG, Kostopoulos V, Steen M. Intrinsic parameters in the fracture of carbon/carbon composites. Composites Science and Technology, 2005,65(6):883-897
    [7] Xie D, Salvi A, Waas A, et al. Discrete cohesive zone model to simulate static fracture in carbon fiber composites. Journal of Composite Materials, 2005,40(22):2025-2046
    [8] Liu MS, Li YL, Xu F, et al. Dynamic compressive mechanical properties and a new constitutive model of 2D-C/SiC composites. Materials Science and Engineering, 2008,489(1-2):120-126
    [9] 卢广达, 陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):749-762
    [9] ( Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):749-762 (in Chinese))
    [10] 王勃, 张阳博, 左宏 等. 压应力对压剪裂纹扩展的影响研究. 力学学报, 2019,51(3):845-851
    [10] ( Wang Bo, Zhang Yangbo, Zuo Hong, et al. Study on the inflfluence of compressive stress on the compression shear crack propagation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):845-851 (in Chinese))
    [11] Di Stasio L, Ayadi Z. Finite element solution of the fiber/matrix interface crack problem: Convergence properties and mode mixity of the Virtual Crack Closure Technique. Finite Elements in Analysis and Design, 2019,167:103332
    [12] Shokrieh MM, Rajabpour-Shirazi H, Heidari-Rarani M. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Computational Materials Science, 2012,65:66-73
    [13] Liu PF, Hou SJ, Chu JK, et al. Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Composite Structures, 2011,93(6):1549-1560
    [14] Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Composites Science and Technology, 2008,68(12):2383-2390
    [15] Harper PW, Hallett SR. A fatigue degradation law for cohesive interface elements-Development and application to composite materials. International Journal of Fatigue, 2010,32(11):1774-1787
    [16] 王志凯, 陈志鹏, 杨娜娜 等. 初始缺陷对复合材料层合板力学性能影响研究. 西北工业大学学报, 2019,37(4):730-736
    [16] ( Wang Zhikai, Chen Zhipeng, Yang Nana, et al. Study on the effect of initial defects on the mechanical properties of composite laminates. Journal of Northwestern Polytechnical University, 2019,37(4):730-736 (in Chinese))
    [17] Motamedi D, Mohammadi S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. International Journal of Mechanical Sciences, 2012,54(1):20-37
    [18] Baydoun M, Fries T P. Crack propagation criteria in three dimensions using the XFEM and an explicit-implicit crack description. International Journal of Fracture, 2012,178(1-2):51-70
    [19] Chen C, Cai HY, Li JJ, et al. One-dimensional extended FEM based approach for predicting the tensile behavior of SHCC-FRP composites. Engineering Fracture Mechanics, 2020,225:106775
    [20] Ma X, Bian K, Liu H, et al. Numerical and experimental investigation of the interface properties and failure strength of CFRP T-Stiffeners subjected to pull-off load. Materials & Design, 2020,185:108231
    [21] I Ud Din, Hao P, Franz G, et al. Elastoplastic CDM model based on Puck's theory for the prediction of mechanical behavior of Fiber Reinforced Polymer (FRP) composites. Composite Structures, 2018(201):291-302
    [22] Xie J, Fang G, Chen Z, et al. An anisotropic elastoplastic damage constitutive model for 3D needled C/C-SiC composites. Composite Structures, 2017,176:164-177
    [23] Li J, Jiao G, Wang B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part II-Material model and numerical implementation. Chinese Journal of Aeronautics, 2015,28(1):314-326
    [24] Wei L, Zhu W, Yu Z, et al. A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels. Composite Science and Technology, 2019,182:107757
    [25] 杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型. 力学学报, 2019,51(6):1797-1809
    [25] ( Yang Zhengmao, Liu Hui, Yang Junjie. Damage constitutive model forthermal shocked-ceramic matrix composite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1797-1809 (in Chinese))
    [26] 张根西, 张培伟, 李彦斌 等. 缝合式三维编织C/SiC复合材料拉伸加卸载力学行为. 复合材料学报, 2019,36(12):2894-2901
    [26] ( Zhang Genxi, Zhang Peiwei, Li Yanbin, et al. Tensile loading and unloading mechanical behavior of stitched three-dimensional braided C/SiC composites. Acta Materiae Compositae Sinica, 2019,36(12):2894-2901 (in Chinese))
    [27] 李艳, 崔红, 王斌 等. 致密化工艺对厚壁针刺C/C复合材料性能的影响. 复合材料学报, 2017,34(10):2337-2343
    [27] ( Li Yan, Cui Hong, Wang Bin, et al. Influence of densification process on the properties of thick-wall needle-punched C/C composites. Acta Materiae Compositae Sinica, 2017,34(10):2337-2343 (in Chinese))
    [28] 李俊, 矫桂琼, 王波 等. 二维编织 C/SiC 复合材料非线性损伤本构模型与应用. 复合材料学报, 2013,30(1):165-171
    [28] ( Li Jun, Jiao Guiqiong, Wang Bo, et al. Nonlinear damage constitutive model of 2D braided C/SiC composites and its application. Acta Materiae Compositae Sinica, 2013,30(1):165-171 (in Chinese))
    [29] Mccarthy CT, O'Higgins RM, Frizzell RM. A cubic spline implementation of non-linear shear behaviour in three-dimensional progressive damage models for composite laminates. Composite Structures, 2010,92(1):173-181
    [30] Elias N Eliopoulos, Theodore P Philippidis. A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part I: Material constitutive model. Composite Science and Technology, 2001,71:742-749
    [31] 黄文超, 朱照泽. 飞机复合材料长桁面外拉伸失效分析. 机械强度, 2019,41(3):248-252
    [31] ( Huang Wenchao, Zhu Zhaoxi. Failure analysis of outer tension of aircraft composite long truss. Journal of Mechanical Strength, 2019,41(3):248-252 (in Chinese))
    [32] Schellekens JCJ, Borst RD. The use of the Hoffman yield criterion in finite element analysis of anisotropic composites. Computers & Structures, 1990,37(6):1087-1096
  • 加载中
计量
  • 文章访问数:  1701
  • HTML全文浏览量:  403
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-25
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回