EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维衰减湍流的速度加速度结构函数

周泽友

周泽友. 二维衰减湍流的速度加速度结构函数[J]. 力学学报, 2020, 52(4): 1035-1044. doi: 10.6052/0459-1879-20-056
引用本文: 周泽友. 二维衰减湍流的速度加速度结构函数[J]. 力学学报, 2020, 52(4): 1035-1044. doi: 10.6052/0459-1879-20-056
Zhou Zeyou. VELOCITY-ACCELERATION STRUCTURE FUNCTION IN TWO-DIMENSIONAL DECAYING TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1035-1044. doi: 10.6052/0459-1879-20-056
Citation: Zhou Zeyou. VELOCITY-ACCELERATION STRUCTURE FUNCTION IN TWO-DIMENSIONAL DECAYING TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1035-1044. doi: 10.6052/0459-1879-20-056

二维衰减湍流的速度加速度结构函数

doi: 10.6052/0459-1879-20-056
基金项目: 1)清华大学资金资助
详细信息
    通讯作者:

    周泽友

  • 中图分类号: O354.5

VELOCITY-ACCELERATION STRUCTURE FUNCTION IN TWO-DIMENSIONAL DECAYING TURBULENCE

  • 摘要: 湍流场中二阶速度加速度结构函数 (velocity-acceleration structure function, VASF) 被认为与尺度间能量或者拟涡能的传递相关,其正负表明传递的方向. 三维湍流中,能量从大尺度向 小尺度传递,VASF 为负. 在二维湍流中,能量反向传递到大尺度,拟涡能正向传递到小尺度,因此理论上 VASF 无论在反向能量级串区还是在正向拟 涡能级串区均为正. 然而,相对于三维湍流中 VASF 的充分研究,二维湍流中 VASF 的正负性迄今尚无实验或数值模拟数据验证. 本文通过三维二维湍流中普适的公式推导,指出在空间非均匀湍流场中,VASF 除了尺度间传递,还受到非均匀项的影响. 一种常见的空间非均匀湍流场是在实验研究中常用的风洞或水洞中,湍流发生装置 (如栅格) 后的湍流. 该流场中,湍流强度随下游位置增大而逐渐衰减,这种衰减则带来空间上的非均匀性. 本文在基于竖直流动皂膜的二维衰减湍流场中,利用拉格朗日粒子追踪法测得在拟涡能级串区的 VASF,并分析各部分的影响. 结果表明,虽然尺度间传递项为正值,但由于衰减带来的非均匀项为负值,使得 VASF 的值为负,使之失去了表征拟涡能传递方向的意义. 因此,在类似风洞、水洞、水槽等衰减流场中对 VASF 的讨论不应忽略非均匀项. 最后对与 VASF 密切相关的弥散过程进行分析,发现后期弥散过程变慢是由于负的 VASF 导致.

     

  • [1] Mann J, Ott S, Andersen JS. Experimental study of relative, turbulent diffusion. Ris? National Laboratory, 1999
    [2] Falkovich G, Dzki KG, Vergassola M. Particles and fields in fluid turbulence. Reviews of Modern Physics, 2001,73(4):913-975
    [3] Pumir A, Shraiman BI, Chertkov M. The Lagrangian view of energy transfer in turbulent flow. Europhysics Letters, 2001,56(3):379-385
    [4] Xu H, Pumir A, Bodenschatz E. Lagrangian view of time irreversibility of fluid turbulence. Science China-Physics Mechanics & Astronomy, 2016,59(1):614702
    [5] Kolmogorov AN. The local structure of turbulence in Incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk Sssr, 1941,30:301-305
    [6] Ouellette NT, Xu H, Bourgoin M, et al. An experimental study of turbulent relative dispersion models. New Journal of Physics, 2006,8(6):109
    [7] Kraichnan RH. Inertial ranges in two-dimensional turbulence. Physics of Fluids, 1967,10(7):1417-1423
    [8] Batchelor GK. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Physics of Fluids, 1969,12(12):233-239
    [9] Chen S, Ecke RE, Eyink GL, et al. Physical mechanism of the two-dimensional inverse energy cascade. Physical Review Letters, 2006,96(8):84502
    [10] Boffetta G, Musacchio S. Evidence for the double cascade scenario in two-dimensional turbulence. Physical Review E, 2010,82(1):16307
    [11] Belmonte A, Goldburg WI, Kellay H, et al. Velocity fluctuations in a turbulent soap film: The third moment in two dimensions. Physics of Fluids, 1999,11(5):1196-1200
    [12] Fang L, Ouellette NT. Advection and the efficiency of spectral energy transfer in two-dimensional turbulence. Physical Review Letters, 2016,117(10):104501
    [13] Hill RJ. Opportunities for use of exact statistical equations. Journal of Turbulence, 2006,7(43):1-13
    [14] Landau L, Lifshitz E. A Course of Theoretical Physics. Pergamon Press, Vol. 6, 1959
    [15] Monin AS, Yaglom AM. Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Courier Corporation, 1975
    [16] Frisch U. Turbulence: The legacy of A. N. Kolmogorov. Cambridge, England: Cambridge University Press, 1995
    [17] Davidson P. Turbulence: An Introduction for Scientists and Engineers. Oxford: Oxford University Press, 2015
    [18] Lindborg E. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? Journal of Fluid Mechanics, 1999,388:259-288
    [19] Bragg AD, De Lillo F, Boffetta G. Irreversibility inversions in two-dimensional turbulence. Physical Review Fluids, 2018,3(2):24302
    [20] Gao P, Lu X. Instability of an oscillatory fluid layer with insoluble surfactants. Journal of Fluid Mechanics, 2008,595:461-490
    [21] Zhou Q, Huang Y, Lu Z, et al. Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh-Taylor turbulence. Journal of Fluid Mechanics, 2016,786:294-308
    [22] Couder Y, Chomaz J, Rabaud M. On the hydrodynamics of soap films. Physica D, 1989,37(3):384-405
    [23] Zhang J, Childress S, Libchaber A, et al. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature, 2000,408(6814):835-839
    [24] 杨义红, 尹协振, 陆夕云. 肥皂膜水洞实验技术. 实验流体力学, 2005,19(4):36-41
    [24] ( Yang Yihong, Yin Xiezhen, Lu Xiyun. Experimental methods in a soap film tunnel. Journal of Experimental in Fluid Mechanics, 2005,19(4):36-41 (in Chinese))
    [25] Jia L, Yin X. Passive oscillations of two tandem flexible filaments in a flowing soap film. Physical Review Letters, 2008,100(22):228104
    [26] 王显圣, 司廷, 罗喜胜 等. 柱形汇聚激波冲击球形重气体界面的实验研究. 力学学报, 2012,44(3):473-480
    [26] ( Wang Xiansheng, Si Ting, Luo Xisheng, et al. Experimental inverstigation on a spherical heavy-gas interface accelerated by a cylindeical converging shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(3):473-480 (in Chinese))
    [27] Wang M, Si T, Luo X. Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Experiments in Fluids, 2013,54(1):1427
    [28] Zhou Z, Fang L, Ouellette NT, et al. Vorticity gradient stretching in the direct enstrophy transfer process of two-dimensional turbulence. Physical Review Fluids, 2020,5(5):054602
    [29] 周泽友, 万冬梅, 徐海涛. 平面流动皂膜的表面张力系数及厚度测量. 实验流体力学, 2020,34(3):90-96
    [29] ( Zhou Zeyou, Wan Dongmei, Xu Haitao. Surface tension coefficient and thickness measurements in planar soap-film flows. Journal of Experimental in Fluid Mechanics, 2020,34(3):90-96 (in Chinese))
    [30] Pumir A, Xu H, Bodenschatz E, et al. Single-particle motion and vortex stretching in three-dimensional turbulent flows. Physical Review Letters, 2016,116(12):124502
    [31] Ouellette NT, Xu HT, Bodenschatz E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Experiments in Fluids, 2006,40(2):301-313
    [32] Pope SB. Turbulent Fow. Cambridge, England: Cambridge University Press, 2000
    [33] He G, Jin G, Yang Y. Space-time correlations and dynamic coupling in turbulent flows. Annual Review of Fluid Mechanics, 2017,49(1):51-70
    [34] Belmonte A, Martin B, Goldburg WI. Experimental study of Taylor's hypothesis in a turbulent soap film. Physics of Fluids, 2000,12(4):835-845
    [35] Sinhuber M, Bewley GP, Bodenschatz E. Dissipative effects on inertial-range statistics at high Reynolds numbers. Physical Review Letters, 2017,119(13):134502
    [36] Rivera M, Vorobieff P, Ecke RE. Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Physical Review Letters, 1998,81(7):1417-1420
    [37] Jucha J, Xu H, Pumir A, et al. Time-reversal-symmetry breaking in turbulence. Physical Review Letters, 2014,113(5):54501
    [38] Taylor GI. Diffusion by continuous movements. Proceedings of the London Mathematical Society, 1922,2(1):196-212
    [39] Batchelor GK. The Application of the similarity theory of turbulence to atmosperic diffusion. Quarterly Journal of the Royal Meteorological Society, 1950,76(328):133-146
  • 加载中
计量
  • 文章访问数:  1030
  • HTML全文浏览量:  227
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回