EI、Scopus 收录
中文核心期刊

基于Navier-Stokes方程残差的隐式大涡模拟有限元模型

陈林烽

陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52(5): 1314-1322. DOI: 10.6052/0459-1879-20-055
引用本文: 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52(5): 1314-1322. DOI: 10.6052/0459-1879-20-055
Chen Linfeng. A RESIDUAL-BASED UNRESOLVED-SCALE FINITE ELEMENT MODELLING FOR IMPLICT LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322. DOI: 10.6052/0459-1879-20-055
Citation: Chen Linfeng. A RESIDUAL-BASED UNRESOLVED-SCALE FINITE ELEMENT MODELLING FOR IMPLICT LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322. DOI: 10.6052/0459-1879-20-055
陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52(5): 1314-1322. CSTR: 32045.14.0459-1879-20-055
引用本文: 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52(5): 1314-1322. CSTR: 32045.14.0459-1879-20-055
Chen Linfeng. A RESIDUAL-BASED UNRESOLVED-SCALE FINITE ELEMENT MODELLING FOR IMPLICT LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322. CSTR: 32045.14.0459-1879-20-055
Citation: Chen Linfeng. A RESIDUAL-BASED UNRESOLVED-SCALE FINITE ELEMENT MODELLING FOR IMPLICT LARGE EDDY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1314-1322. CSTR: 32045.14.0459-1879-20-055

基于Navier-Stokes方程残差的隐式大涡模拟有限元模型

基金项目: 1)江苏省自然科学青年基金(BK2018040999);江苏省高等学校自然科学基金(18KJB570001)
详细信息
    通讯作者:

    陈林烽

  • 中图分类号: O35

A RESIDUAL-BASED UNRESOLVED-SCALE FINITE ELEMENT MODELLING FOR IMPLICT LARGE EDDY SIMULATION

  • 摘要: 对应于湍流的大尺度与小尺度流场信息, 本文在有限元的框架下, 假设Navier-Stokes方程的解的形函数由大尺度和不可解尺度形函数叠加组成, 引入对应的权函数, 将Navier-Stokes方程的有限元变分形式分解为大尺度和不可解尺度系统. 根据不可解尺度系统, 构建基于Navier-Stokes大尺度方程残差的不可解尺度模型, 将其代入Navier-Stokes方程的大尺度系统, 进而数值求解大尺度系统得到Navier-Stokes方程的大尺度解. 该方法无需像传统的大涡模拟方法那样对方程的解进行过滤, 通过对形函数进行尺度分解实现解的尺度分解. 本文使用该方法的自编程序代码开展了槽道湍流的数值模拟. 通过与有限差分大涡模拟、DNS计算结果的比较, 发现在使用较少网格情况下该方法预测的平均流向速度在近壁区与DNS数据吻合, 在黏性外层略偏高; 该方法对雷诺应力预测偏低导致从流向向垂向方向上湍动能输运略偏低. 流向速度等值面图显示该方法有效捕捉到了大尺度旋涡结构; 同时在近壁区可以观察到明显的低速条带结构.
    Abstract: In consistence with large and small scales in turbulent flows, shape function space can be divided into resolved and unresolved scale spaces in a frame of finite element method. Introducing the same decomposition of the weighting function space, the variational formulations of Navier-Stokes equations can be divided into two systems of equations: resolved- and unresolved-scale equations. Generally, only the resolved-scale equation is computed, and the unresolved scales are modeled. Based on the unresolved-scale equations, an approximate residual-based unresolved-scale modeling is proposed in the present study. The large-scale equations are then computed by substituting the unresolved-scale modeling. The method is called residual-based large eddy simulation, in which unlike in the classical LES a filtering for Navier-Stokes equations is needed, multiscale decomposition is instead used. Numerical simulations of a turbulent channel flow are implemented with in-house codes of the residual-based large eddy simulation. The results show that, with a low number of elements, the mean streamwise velocity obtained using the present method is in agreement with the DNS data in the inner layer, and it is slightly overpredicted in the outer layer. Underprediction of the Reynolds stress by the present method causes a reduction of turbulence intensity transportation from the streamwise direction to the normal direction. Isosurfaces of the streamwise velocity reveals its capability of capturing the large-eddy structures. Meanwhile, low-speed streaks can be clearly observed in the sublayer near the wall.
  • [1] 张兆顺, 崔桂香, 许春晓 等. 湍流理论与模拟. 北京: 清华大学出版社, 2017
    [1] ( Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao, et al. Theory and Modeling of Turbulence. Beijing: Tsinghua University Press, 2017 (in Chinese))
    [2] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用. 北京: 清华大学出版社, 2008
    [2] ( Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Application of Large Eddy Simulation of Turbulent Flows. Beijing: Tsinghua University Press, 2008 (in Chinese))
    [3] 董宇红, 陈林烽, 唐一敏. 存在热浮力的剪切湍流中颗粒近壁运动的大涡模拟. 上海大学学报(自然科学版), 2009,15(6):600-606
    [3] ( Dong Yuhong, Chen Linfeng, Tan Yimin. Large eddy simulation of particle motion in shear turbulent flow due to thermal buoyancy. Journal of Shanghai University $($Natural Science Edition$)$, 2009,15(6):600-606 (in Chinese))
    [4] 陈林烽. 热剪切湍流中微细颗粒输运特性的大涡模拟研究. [硕士论文]. 上海: 上海大学, 2011
    [4] ( Chen Linfeng. An investigation on particle motion in the stratified turbulence by LES. [Master Thesis]. Shanghai: Shanghai University, 2011 (in Chinese))
    [5] 吴霆, 时北极, 王士召 等. 大涡模拟的壁模型及其应用. 力学学报, 2018,50(3):453-466
    [5] ( Wu Ting, Shi Beiji, Wang Shizhao, et al. Wall-model for large-eddy simulation and its applications. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):453-466 (in Chinese))
    [6] 时北极, 何国威, 王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019,51(3):754-766
    [6] ( Shi Beiji, He Guowei, Wang Shizhao. Large-eddy simulation of flows with complex geometry by using the slip-wall model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):754-766 (in Chinese))
    [7] Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review, 1963,91:99
    [8] Lilly DK. The representation of small-scale turbulence in numerical experiment// Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, 1967: 195-210
    [9] Bardina J, Ferziger JH, Reynolds WC. Improved subgrid model for large-eddy simulation. AIAA meeting paper, 1980
    [10] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 1991,3(3):1760-1765
    [11] Meneveau C, Lund TS, Cabot WH. A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics, 1996,319(1):353-385
    [12] Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation. Annual Review of Fluid Mechanics, 2000,32(1):1-32
    [13] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence and Combustion, 1999,62(3):183-200
    [14] Hughes TJR, Mazzei L, Jansen KE. Large eddy simulation and the variational multiscale method. Computing and Visualization in Science, 2000,3:47-59
    [15] Hughes TJR, Mazzei L, Oberai AA, et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Physics of Fluids, 2001,13(2):505-512
    [16] Hughes TJR, Oberai AA, Mazzei L. Large eddy simulation of turbulent channel flows by the variational multiscale method. Physics of Fluids, 2001,13(6):1784-1799
    [17] Hughes TJR. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 1995,127:387-401
    [18] Hughes TJR, Sangalli G. Variational multiscale analysis: The fine-scale Green's function, projection, optimization, localization, and stabilized methods, SIAM on Journal Numerical Analysis, 2007,45:539-557
    [19] Colomés O, Badia S, Codina R, et al. Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Computer Methods in Applied Mechanics and Engineering, 2015,285:32-63
    [20] Eikelder MFP, Akkerman I. Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small--scales and isogeometric analysis. I: The convective--diffusive context. Computer Methods in Applied Mechanics and Engineering, 2018,331:259-280
    [21] Eikelder MFP, Akkerman I. Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small--scales and isogeometric analysis. II: The incompressible Navier--Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2018,340:1135-1154
    [22] Xu SZ, Gao BS, Hsu MC, et al. A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flows. Computer Methods in Applied Mechanics and Engineering, 2019,352:345-368
    [23] 邵帅, 李明, 王年华 等. 基于非结构/混合网格模拟黏性流的高阶精度DDG/FV混合方法. 力学学报, 2018,50(6):1470-1482
    [23] ( Shao Shuai, Li Ming, Wang Nianhua, et al. High-order DDG/FV hybrid method for viscous flow simulation on unstructured/hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1470-1482 (in Chinese))
    [24] Hughes TJR, Feijóo G, Mazzei L, et al. The variational multiscale method-- A paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998,166:3-24
    [25] 郑海标. 不可压缩Navier-Stokes方程变分多尺度方法研究. [博士论文]. 西安: 西安交通大学, 2011
    [25] ( Zheng Haibiao. Variational multiscale method for the incompressible Navier-Stokes equations. [PhD Thesis]. Xi'an: Xi'an Jiaotong University, 2011 (in Chinese))
    [26] 薛菊峰, 尚月强. 非定常不可压Navier-Stokes方程基于欧拉格式的两水平变分多尺度方法. 西南大学学报(自然科学版), 2018,40(9):84-90
    [26] ( Xue Jufeng, Shang Yueqiang. A finite element variational multiscale method based on the backward Euler scheme for the time-dependent Navier-Stokes equations. Journal of Northwest University $($Natural Science Edition$)$, 2018,40(9):84-90 (in Chinese))
    [27] 薛菊峰, 尚月强. 非定常不可压Navier-Stokes方程基于Crank-Nicolson格式的两水平变分多尺度方法. 工程数学学报, 2019,36(4):419-430
    [27] ( Xue Jufeng, Shang Yueqiang. A finite element variational multiscale method based on crank-nicolson scheme for the unsteady Navier-Stokes equations. Chinese Journal of Engineering Mathematics, 2019,36(4):419-430 (in Chinese))
    [28] Akkerman I. Adaptive variational multiscale formulations using the discrete Germano approach. [PhD Thesis]. Delft: Delft University of Technology, 2009
    [29] Chen LF, Wu GX. Boundary shear flow past a cylinder near a wall. Applied Ocean Research, 2019,92:101923
    [30] Chen LF. Aspects of POD-based wall-layer modeling for the variational multiscale methods. [PhD Thesis]. Delft: Delft University of Technology, 2015
    [31] Shakib F. Finite element analysis of the compressible Euler and Navier-Stokes equations. [PhD Thesis]. Stanford: Stanford University, 1989
    [32] Shakib F, Hughes TJR. A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Computer Methods in Applied Mechanics and Engineering, 1991,87:35-58
    [33] Shakib F, Hughes TJR, Johan Z. A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1991,89:141-219
    [34] Jansen KE, Whiting CH, Hulbert GM. A generalized-$\alpha $ method for integrating the filtered Navier--Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000,190(3):305-319
    [35] Chen LF, Edeling WN, Hulshoff SJ. Pod enriched boundary models and their optimal stabilisation. International Journal for Numerical Methods in Fluids, 2015,77(2): 92-107
    [36] Chen LF, Hu XQ. A POD-Based variational multiscale method for large eddy simulation of turbulent channel flows. International Journal of Computational Methods, 2017,14:1750049
    [37] Chen LF, Hulshoff SJ, Wang YT. 2D residual-based LES of flow around a pipeline close to a flat seabed. Computer Methods in Applied Mechanics and Engineering, 2020,363:112788
  • 期刊类型引用(15)

    1. 唐聃,戴绍仕,谷慧群,Bassam A.Younis. 曲面边界黏性绕流的湍流模型改进方法研究. 力学学报. 2024(01): 58-69 . 本站查看
    2. 吴秀峰,周星宇,曹慧东,韩维池. 装饰条干扰下超高层建筑表面风压系数及风荷载体型系数研究. 建筑结构. 2024(02): 97-105+144 . 百度学术
    3. 万彦斌,徐玉峰,杜华东,黄玉杰,宋庆路,宋楠. 压机舱涡流噪声分析与优化研究. 家电科技. 2024(02): 40-44 . 百度学术
    4. 王家辉,邹琳,张毓辰,苗亚博,徐汉斌. 零质量射流下波浪前缘叶片气动性能数值研究. 力学学报. 2024(10): 2865-2877 . 本站查看
    5. 庄启彬,张焕彬,刘志荣,朱睿. 不同构型潜射航行器倾斜出水流场演化特性. 浙江大学学报(工学版). 2023(01): 200-208 . 百度学术
    6. 孙莉. 优化烟支滤嘴质量的流体力学鼓轮气孔流场模型构建. 机械设计与制造工程. 2023(10): 30-33 . 百度学术
    7. 刘健,邹琳,陶凡,左红成,徐汉斌. 串列双锥柱绕流流动特性的大涡模拟研究. 力学学报. 2022(05): 1209-1219 . 本站查看
    8. 邹琳,左红成,柳迪伟,王家辉,徐劲力. 基于定常吹吸气的波浪型圆柱主动控制研究. 力学学报. 2022(11): 2970-2983 . 本站查看
    9. 王刚,干源,任炯. Walsh函数有限体积法的多重网格特征研究. 力学学报. 2022(12): 3418-3429 . 本站查看
    10. 谢晨月,袁泽龙,王建春,万敏平,陈十一. 基于人工神经网络的湍流大涡模拟方法. 力学学报. 2021(01): 1-16 . 本站查看
    11. 龚升,吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响. 力学学报. 2021(03): 890-901 . 本站查看
    12. 任炯,王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法. 力学学报. 2021(03): 773-788 . 本站查看
    13. 刘琪麟,赖焕新. 基于喷流拟序结构预测的SGS模型比较研究. 力学学报. 2021(07): 1842-1855 . 本站查看
    14. 吴磊,肖左利. 基于人工神经网络的亚格子应力建模. 力学学报. 2021(10): 2667-2681 . 本站查看
    15. 苏昌盛,闫永生,王润军,夏岩,叶金铎,张春秋. 新型立式行星减速机自润滑装置分析与优化. 天津理工大学学报. 2021(06): 1-6 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 28
出版历程
  • 收稿日期:  2020-02-25
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回