EI、Scopus 收录
中文核心期刊

一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制

安新磊, 张莉

安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制[J]. 力学学报, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035
引用本文: 安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制[J]. 力学学报, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035
An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035
Citation: An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035
安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制[J]. 力学学报, 2020, 52(4): 1174-1188. CSTR: 32045.14.0459-1879-20-035
引用本文: 安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制[J]. 力学学报, 2020, 52(4): 1174-1188. CSTR: 32045.14.0459-1879-20-035
An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. CSTR: 32045.14.0459-1879-20-035
Citation: An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. CSTR: 32045.14.0459-1879-20-035

一类忆阻神经元的电活动多模振荡及Hamilton 能量反馈控制

基金项目: 1)国家自然科学基金(11962012);中国博士后科学基金(2018M633649XB)
详细信息
    通讯作者:

    安新磊

  • 中图分类号: O415.5

MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON

  • 摘要: 根据法拉第电磁感应定律,在离子穿越细胞膜或者在外界电磁辐射下,细胞内外的电生理环境会产生电磁感应效应,继而会影响神经元的电活动行为. 基于此,本文考虑电磁感应影响下的 Hindmarsh-Rose (HR) 神经元模型,研究了其混合模式振荡放电特征,并设计一个 Hamilton 能量反馈控制器,将其控制到不同的周期簇放电状态. 首先,通过理论分析发现磁通 HR 神经元系统的 Hopf 分岔使其平衡点的稳定性发生了改变,并产生极限环,进而研究了 Hopf 分岔点附近膜电压的放电特征. 基于双参数数值仿真发现该系统具有丰富的分岔结构,在不同的参数平面上存在倍周期分岔、伴有混沌的加周期分岔、无混沌的加周期分岔以及共存的混合模式振荡. 最后,为了有效控制膜电压的混合模式振荡,利用亥姆霍兹理论计算出磁通 HR 神经元系统的 Hamilton 能量函数并设计 Hamilton 能量反馈控制器,通过数值仿真分析了膜电压在不同反馈增益下的簇放电状态,发现该控制器能够有效地控制膜电压到不同的周期簇放电模式. 本文的研究结果为探究电磁感应下神经元的分岔结构及其能量控制领域提供了有用的理论支撑.
    Abstract: According to Faraday's electromagnetic induction law, the electrophysiological environment in and out the cell will produce electromagnetic induction effects in the case of ions penetrating the cell membrane or in the case of being exposed to external electromagnetic radiation, which will affect the electrical activity behavior of neural systems. Based on this principle, this paper studies the mixed-mode oscillation discharge characteristics of the Hindmarsh-Rose(HR) neuron model (here we call it as magnetic flux HR neuron model) with the influence of electromagnetic induction, and designs a Hamilton energy feedback controller to manage the mode to different periodic cluster discharge states. First, through theoretic analysis, it is found that the stability of equilibrium point in the magnetic flux HR neuron model is changed by the occurrence of Hopf bifurcation in the magnetic flux HR neuron model and a limit cycle is generated. Besides, some discharge characteristics of the membrane voltage near the Hopf bifurcation point are also discussed in detail. Then, it is also displayed there are abundant bifurcation structures in the magnetic flux HR neuron model based on the two-parameter numerical simulations, which includes multi-period bifurcation, period-adding bifurcation with chaos, period-adding bifurcation without chaos and co-existing mixed-mode oscillations in different initial conditions. At last, with the purpose of controlling the mixed-mode oscillation of membrane voltage, the Hamilton energy function is calculated by utilizing the Helmholtz theorem, and a Hamilton energy feedback controller is designed further. Additionally, it can be seen that the controller can effectively control the membrane voltage in different periodic clustering discharge modes, with the analysis of the discharge states of membrane voltage under different feedback gains in view of the numerical simulation. The results of this paper provide a useful theoretical support for the study of bifurcation structure in artificial neuron system under electromagnetic induction and the field of energy control related to the neurons.
  • [1] Rabinovich MI, Varona P, Selverston AI, et al. Dynamical principles in neuroscience. Reviews of Modern Physics, 2006,78(4):1213-1265
    [2] Ryashko L, Slepukhina E. Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, 2017,96(3):032212
    [3] Medvedeva TM, Sysoeva MV, van Luijtelaar G, et al. Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Networks, 2018,98:271-282
    [4] Xia YH, Mateja G, Huang WT, et al. Limit cycles in a model of olfactory sensory neurons. International Journal of Bifurcation and Chaos, 2019,29(3):1950038
    [5] 古华光. 神经系统信息处理和异常功能的复杂动力学. 力学学报, 2017,49(2):410-420
    [5] ( Gu Huaguang. Complex dynamics of the nervous synchronization for information processing and abnormal functions. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):410-420 (in Chinese))
    [6] 曹金凤, 韩芳. 考虑树突整合效应的神经元网络的放电和同步特性. 动力学与控制学报, 2019,17(5):560-566
    [6] ( Cao Jinfeng, Han Fang. Firing and synchronization characteristics of neuronal networks considering dendritic integration effect. Journal of dynamics and control, 2019,17(5):560-566 (in Chinese))
    [7] 李佳佳, 吴莹, 独盟盟 等. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, 2015,64(3):030503
    [7] ( Li Jiajia, Wu Ying, Du Mengmeng, et al. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, 2015,64(3):030503 (in Chinese))
    [8] Feibiao Z, Shenquan L. Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Frontiers in Computational Neuroscience, 2017,11:107-114
    [9] Ma J, Tang J. A review for dynamics of collective behaviors of network of neurons. Science China Technological Sciences, 2015,58(12):2038-2045
    [10] Lü M, Wang CN, Ren GD, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016,85:1479-1490
    [11] Xu Y, Jia Y, Ma J, et al. Collective responses in electrical activities of neurons under field coupling. Scientific Reports, 2018,8:1349
    [12] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔. 物理学报, 2016,65(21):210502
    [12] ( Ding Xueli, Li Yuye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica sinica, 2016,65(21):210502 (in Chinese))
    [13] Chen CJ, Chen JQ, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dynamics, 2019,95(4):3385-3399
    [14] Bao H, Hu AH, Liu WB, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(2):502-511
    [15] 杨仪. Hindmarsh-Rose神经元模型的分岔与控制. [博士论文]. 重庆: 西南大学, 2018
    [15] ( Yang Yi. Bifurcation and control of Hindmarsh-Rose neuronal model. [PhD Thesis]. Chongqing: Southwest University, 2018 (in Chinese))
    [16] 汪净. 神经元模型的放电特性与相位同步现象. [博士论文]. 广东: 华南理工大学, 2018
    [16] ( Wang Jing. Discharge characteristics and phase synchronization phenomena of neuron modes. [PhD Thesis]. Guangdong: South China University of Technology, 2018 (in Chinese))
    [17] 陆博, 刘深泉, 刘宣亮. 神经元模型中混合模式振荡动力学研究进展. 动力学与控制学报, 2016,14(5):481-491
    [17] ( Lu Bo, Liu Shenquan, Liu Xuanliang. Research development on dynamics of mixed-mode oscillations in neuronal models. Journal of dynamics and control, 2016,14(5):481-491 (in Chinese))
    [18] 于浩, 肖晗, 司芳源 等. 磁流对神经元 Chay 模型放电模式的影响. 生物物理学, 2017,5(1):1-7
    [18] ( Yu Hao, Xiao Hao, Si Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect. Biophysics, 2017,5(1):1-7 (in Chinese))
    [19] Wu FQ, Tasawar H, An XL, et al. Can Hamilton energy feedback suppress the chameleon chaotic flow. Nonlinear Dynamics, 2018,94(1):669-677
    [20] Usha K, Subha PA. Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chinese Physics B, 2019,28(2):20502-020502
    [21] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016,65(24):240501
    [21] ( Wang Chunni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016,65(24):240501 (in Chinese))
    [22] Li F, Yao CG. The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dynamics, 2016,84(4):2305-2315
    [23] An XL, Zhang L. Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dynamics, 2018,94(2):2995-3010
    [24] Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London Series B, 1984,221:87-102
    [25] Hassard B, Kazarinoff N, Wan YH. Theory and Application of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981: 306-319
    [26] Kingston SL, Thamilmaran K. Bursting oscillations and mixed-mode oscillations in driven Liénard system. International Journal of Bifurcation and Chaos, 2017,27(7):25-37
    [27] Torrealdea FJ, d'Anjou A, Gra?a M. Energy aspects of the synchronization of model neurons. Physical Review E, 2006,74:011905
    [28] Wang Y, Wang CN, Ren GD. Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dynamics, 2017,89:1967-1987
    [29] 王如彬, 张志康. 基于信息编码的神经能量计算. 力学学报, 2012,44(4):779-786
    [29] ( Wang Rubin, Zhang Zhikang. Computation of neuronal energy based on information coding. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):779-786 (in Chinese))
    [30] 彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码. 力学学报, 2019,51(4):1202-1209
    [30] ( Peng Jun, Wang Rubin, Wang Yihong. Energy coding of hemodynamic phenomena in the brain. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1202-1209 (in Chinese))
  • 期刊类型引用(9)

    1. 刘畅. 电磁下耦合Chay神经元模型的放电及同步. 数学的实践与认识. 2024(08): 248-256 . 百度学术
    2. 薛睿,张莉,安新磊,李雯. 电磁场作用下HR神经元模型的分岔分析及哈密顿能量控制. 四川大学学报(自然科学版). 2024(06): 159-167 . 百度学术
    3. 安新磊,熊丽,乔帅. 电磁驱动下一类混合神经元模型的动力学响应与图像加密应用. 电子与信息学报. 2023(03): 929-940 . 百度学术
    4. 任雁澜,乔帅,安新磊. 基于阈值控制策略的Filippov神经元模型的动力学及多稳态分析. 云南大学学报(自然科学版). 2023(04): 855-865 . 百度学术
    5. 肖冉,安新磊,祁慧敏,乔帅. 电场作用下HR神经元的分岔分析及参数辨识. 浙江大学学报(理学版). 2022(06): 691-697+705 . 百度学术
    6. 唐利红,贺宗梅,姚延立. 具有隐藏超级多稳定性的磁感应HR神经元及其电路实现. 计算物理. 2022(05): 589-597 . 百度学术
    7. 安新磊,乔帅,张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报. 2021(05): 46-65 . 百度学术
    8. 张薇,安新磊,王红梅,乔帅. mHR神经元模型的分岔分析及其哈密顿能量控制. 云南大学学报(自然科学版). 2021(03): 486-494 . 百度学术
    9. 祁慧敏,张莉,安新磊,乔帅,肖冉. 电磁感应下一类新皮层神经元的放电及同步. 山东大学学报(理学版). 2021(05): 1-11 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  1838
  • HTML全文浏览量:  361
  • PDF下载量:  115
  • 被引次数: 18
出版历程
  • 收稿日期:  2020-02-10
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回