EI、Scopus 收录
中文核心期刊

Birkhoff 系统稳定性的动力学控制

陈菊, 郭永新, 刘世兴, 梅凤翔

陈菊, 郭永新, 刘世兴, 梅凤翔. Birkhoff 系统稳定性的动力学控制[J]. 力学学报, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
引用本文: 陈菊, 郭永新, 刘世兴, 梅凤翔. Birkhoff 系统稳定性的动力学控制[J]. 力学学报, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
Citation: Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
陈菊, 郭永新, 刘世兴, 梅凤翔. Birkhoff 系统稳定性的动力学控制[J]. 力学学报, 2020, 52(4): 928-931. CSTR: 32045.14.0459-1879-19-367
引用本文: 陈菊, 郭永新, 刘世兴, 梅凤翔. Birkhoff 系统稳定性的动力学控制[J]. 力学学报, 2020, 52(4): 928-931. CSTR: 32045.14.0459-1879-19-367
Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. CSTR: 32045.14.0459-1879-19-367
Citation: Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. CSTR: 32045.14.0459-1879-19-367

Birkhoff 系统稳定性的动力学控制

基金项目: 1)国家自然科学基金(11272050);国家自然科学基金(11572034);国家自然科学基金(11872030);国家自然科学基金(11972177)
详细信息
    通讯作者:

    陈菊

    陈菊,$\boxed{\hbox{梅凤翔}}$

  • 中图分类号: O316

DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM

  • 摘要: 本文研究 Birkhoff 系统和广义 Birkhoff 系统平衡稳定性的动力学控制. 首先建立系统的运动方程和平衡方程. 其次,研究 Birkhoff 系统中控制参数出现在 Birkhoff 函数中平衡稳 定性的动力学控制. 方法是通过选取控制参数使得 Birkhoff 函数 $B$ 成为定号函数,而其时间导数 $\dot {B}$ 为与 $B$ 反号的常号函数. 再次,研究广义 Birkhoff 系统平衡稳定性的动力学控制,通过选取 Birkhoff 函数或附加项中包含控制参数的方法,使得 Birkhoff 函数是定号函数,而其时间导数为反号的常号函数,从而控制系统的平衡稳定性. 最后举例说明结果的应用.
    Abstract: A dynamical control of the stability of equilibrium for the Birkhoffian system and generalized Birkhoffian system are studied. First, the equilibrium of motion and the equations of equilibrium of the systems are established. Secondly, the dynamical control of the stability of equilibrium for the Birkhoffian system where the Birkhoffian contain control parameters is investigated. The control parameters are chosen such that the Birkhoffian $B$ becomes a definite function and its derivative of time $\dot {B}$ is opposite sign. Thirdly, the dynamical control of the stability of equilibrium for Birkhoffian system where control parameters are contained in the Birkhoffian or in the additional terms is explored. Finally, some examples are given to illustrate the application of the results.
  • [1] Santilli RM. Foundations of Theoretical Mechanics I, II. New York: Springer-Verlag, 1983
    [2] 梅凤翔, 史荣昌, 张永发 等. Birkhoff 系统动力学. 北京: 北京理工大学出版社, 1996
    [2] ( Mei Fengxiang, Shi Rongchang, Zhang Yongfa, et al. Dynamics of Birkhoffian System. Beijing: Beijing Institute of Technology Press, 1996 (in Chinese))
    [3] Galiullin AS, Gafarov GG, Malaishka RP, et al. Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. Moscow:UFN, 1997 (in Russian))
    [4] 梅凤翔. 广义 Birkhoff 系统动力学. 北京: 科学出版社, 2013
    [4] ( Mei Fengxiang. Dynamics of Generalized Birkhoff System. Beijing: Science Press, 2013 (in Chinese))
    [5] Mei FX. The Noether's theory of Birkhoffian systems. Science in China, Serie A, 1993,36(12):1456-1467
    [6] Shi RC, Mei FX, Zhu HP. On the stability of motion of a Birkhoff system. Mech Res Commu, 1994,21(3):269-272
    [7] Mei FX. On the Birkhoffian mechanics. Int J Non-Linear Mech, 2001,36(5):817-834
    [8] Fu JL, Chen LQ, Luo Y, et al. Stability for the equilibrium state manifold of relatiristic Birkhoffian systems. Chin Phys, 2003,12(4):351-356
    [9] 许志新. Birkhoff 系统的守恒量与稳定性. 物理学报, 2005,54(10):4971-4973
    [9] ( Xu Zhixin. The conserved quantity and the stability of Birkhoff system. Acta Phys Sin, 2005,54(10):4971-4973 (in Chinese))
    [10] Li YM, Mei FX. Stability for manifolds of equilibrium states of generalized Bikrhoff system. Chin Phys B, 2010,19(8):080302
    [11] Mei FX, Wu HB. Bifurcation for the generalized Birkhoffian system. Chin Phys B, 2015,24(5):054501
    [12] 张毅. 自治广义 Birkhoff 系统的平衡稳定性. 物理学报, 2010,59(1):0020-05
    [12] ( Zhang Yi. Stability of equilibrium for the autonomous generalized Birkhoffian system. Acta Phys Sin, 2010,59(1):0020-05 (in Chinese))
    [13] 陈向炜, 曹秋鹏, 梅凤翔. 广义 Birkhoff 系统稳定性对双参数的依赖关系. 力学季刊, 2017,38(1):108-112
    [13] ( Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. Dependance of stability of generalized Birkhoff system on two parameters. Chinese Quarterly of Mechanics, 2017,38(1):108-112 (in Chinese))
    [14] 崔金超, 梅凤翔. 广义 Birkhoff 方程的平衡稳定性. 动力学与控制学报, 2010,8(4):297-3
    [14] ( Cui Jinchao, Mei Fengxiang. Stability of equilibrium for generalized Birkhoff equation. Journal of Dynamics and Control, 2010,8(4):297-3 (in Chinese))
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  1615
  • HTML全文浏览量:  296
  • PDF下载量:  188
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-12-22
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回