[1] | Shih TM, Sung CH, Yang B . A numerical method for solving nonlinear heat transfer equations. Numerical Heat Transfer, Part B: Fundamentals, 2008,54(4):338-353 | [2] | 李艾伦, 傅卓佳, 李柏纬 等. 含肿瘤皮肤组织传热分析的广义有限差分法. 力学学报, 2018,50(5):1198-1205 | [2] | ( Li Ailun, Fu Zhuojia, Li Powei , et al. Generalized finite difference method for bioheat transfer analysis on skin tissue with tumors. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1198-1205 (in Chinese)) | [3] | Li E, Zhang ZP, He ZC , et al. Smoothed finite element method with exact solutions in heat transfer problems. International Journal of Heat and Mass Transfer, 2014,78:1219-1231 | [4] | Zhang J, Chauhan S . Fast explicit dynamics finite element algorithm for transient heat transfer. International Journal of Thermal Science, 2019,139:160-175 | [5] | 刘硕, 方国东, 王兵 等. 近场动力学与有限元方法耦合求解热传导问题. 力学学报, 2018,50(2):339-348 | [5] | ( Liu Shuo, Fang Guodong, Wang Bing , et al. Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):339-348 (in Chinese)) | [6] | Copur M, Eruslu MN . Finite volume modeling of the solidification of an axial steel cast impeller. Metalurgija, 2014,53(2):149-154 | [7] | 顾元宪, 陈飚松, 张洪武 等. 非线性瞬态热传导的精细积分方法. 大连理工大学学报, 2000,40(S1):24-28 | [7] | ( Gu Yuanxian, Chen Biaosong, Zhang Hongwu , et al. Precise time integration method for solution of nonlinear transient heat conduction. Journal of Dalian University of Technology, 2000,40(S1):24-28 (in Chinese)) | [8] | Tang JN, Huang M, Zhao YY , et al. A new procedure for solving steady-state and transient-state nonlinear radial conduction problems of nuclear fuel rods. Annaual Nuclear Energy, 2017,110:492-500 | [9] | Yang K, Peng HF, Wang J , et al. Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity. International Journal of Heat and Mass Transfer, 2017,108:1551-1559 | [10] | Cui M, Xu BB, Lv J , et al. Numerical solution of multi-dimensional transient nonlinear heat conduction problems with heat sources by an extended element differential method. International Journal of Heat and Mass Transfer, 2018,126:1111-1119 | [11] | Gao XW, Huang SZ, Cui M , et al. Element differential method for solving general heat conduction problems. International Journal of Heat and Mass Transfer, 2017,115:882-894 | [12] | Kunisch K, Volkwein S . Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal of Numerical Analyze, 2002,40(2):492-515 | [13] | 段焰辉, 吴文华, 范召林 等. 基于本征正交分解的气动优化设计外形数据挖掘. 物理学报, 2017,66(22):220203 | [13] | ( Duan Yanhui, Wu Wenhua, Fan Zhaolin , et al. Proper orthogonal decomposition-based data mining aerodynamic shape for design optimization. Acta Physica Sinica, 2017,66(22):220203 (in Chinese)) | [14] | Krysl P, Lall S, Marsden JE . Dimensional model reduction in nonlinear finite element dynamics of solids and structures. International Journal of Numerical Methods in Engineering, 2001,51(4):479-504 | [15] | 郑保敬, 梁钰, 高效伟 等. 功能梯度材料动力学问题的POD模型降阶分析. 力学学报, 2018,50(4):787-797 | [15] | ( Zheng Baojing, Liang Yu, Gao Xiaowei , et al. Analysis for dynamic response of functionally graded materials using POD based reduced order model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):787-797 (in Chinese)) | [16] | 芮珍梅, 陈建兵 . 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报, 2019,51(3):922-931 | [16] | ( Rui Zhenmei, Chen Jianbing . Dimension reduction of FPK equation for velocity response analysis of structures subjected to additive nonstationary excitations. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):922-931 (in Chinese)) | [17] | Ravindran SS . A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International Journal of Numerical Methods in Fluids, 2000,34(5):425-448 | [18] | Leibfritz F, Volkwein S . Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semi-definite programming. Linear Algebra Application, 2006,415(2-3):542-575 | [19] | Biaecki RA, Kassab AJ, Fic A . Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. International Journal of Numerical Methods in Engineering, 2005,62(2):774-797 | [20] | Zhang XH, Xiang H . A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems. International Journal of Heat and Mass Transfer, 2015,84:729-739 | [21] | Gao XW, Hu JX, Huang SZ . A proper orthogonal decomposition analysis method for multimedia heat conduction problems. ASME Journal of Heat Transfer, 2016,138(7):071301 | [22] | 胡金秀, 高效伟 . 变系数瞬态热传导问题边界元格式的特征正交分解降阶方法. 物理学报, 2016,65(1):014701 | [22] | ( Hu Jinxiu, Gao Xiaowei . Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method. Acta Physica Sinica, 2016,65(1):014701 (in Chinese)) | [23] | 冯俞楷, 杜小泽, 杨立军 . 非稳态导热基于温度梯度的本征正交分解降维方法. 中国科学: 技术科学, 2018,48(1):39-47 | [23] | ( Feng Yukai, Du Xiaoze, Yang Lijun . Extrapolating POD reduced-order model based on temperature gradient for unsteady heat conduction. Scientia Sinica Technologica, 2018,48(1):39-47 (in Chinese)) | [24] | Kerschen G, Golinval JC, Vakakis AF , et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dynamical, 2005,41(1-3):147-169 | [25] | Binion D, Chen XL . A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction. Finite Elements Analyze and Design, 2011,47(7):728-738 | [26] | Fic A, Biaecki RA, Kassab AJ . Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method. Numerical Heat Transfer, Part B: Fundamentals, 2005,48(2):103-124 | [27] | Han DX, Yu B, Zhang XY . Study on a BFC-Based POD-Galerkin reduced-order model for the unsteady-state variable-property heat transfer problem. Numerical Heat Transfer, Part B: Fundamentals, 2014,65(3):256-281 | [28] | Gaonkar AK, Kulkarni SS . Application of multilevel scheme and two level discretization for POD based model order reduction of nonlinear transient heat transfer problems. Computational Mechanics, 2015,55(1):179-191 | [29] | Feng SZ, Cui XY, Li AM . Fast and efficient analysis of transient nonlinear heat conduction problems using combined approximations (CA) method. International Journal of Heat and Mass Transfer, 2016,97:638-644 | [30] | Ding CS, Cui XY, Deokar RR , et al. An isogeometric independent coefficients (IGA-IC) reduced order method for accurate and efficient transient nonlinear heat conduction analysis. Numerical Heat Transfer, Part A: Applications, 2018,73(10):667-684 | [31] | 梁钰, 郑保敬, 高效伟 等. 基于POD模型降阶法的非线性瞬态热传导分析. 中国科学: 物理学力学天文学, 2018,48(12):124603 | [31] | ( Liang Yu, Zheng Baojing, Gao Xiaowei , et al. Reduced order model analysis method via proper orthogonal decomposition for nonlinear transient heat conduction problems. Scientia Sinica Physica, Mechanica & Astronomica, 2018,48(12):124603 (in Chinese)) | [32] | Liang YC, Lee HP, Lim SP , et al. Proper orthogonal decomposition and its applications-Part I: Theory. Journal of Sound and Vibration, 2002,252(3):527-544 | [33] | Hogge MA . A comparison of two- and three-level integration schemes for non-linear heat conduction//Lewis RW, Morgan K, Zienkiewics eds. Numerical Methods in Heat Transfer. Chichester, UK: Wiley, 1981: 75-90 |
|