EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水沟槽表面通气减阻实验研究

冯家兴 胡海豹 卢丙举 秦丽萍 张梦卓 杜鹏 黄潇

冯家兴, 胡海豹, 卢丙举, 秦丽萍, 张梦卓, 杜鹏, 黄潇. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24-30. doi: 10.6052/0459-1879-19-279
引用本文: 冯家兴, 胡海豹, 卢丙举, 秦丽萍, 张梦卓, 杜鹏, 黄潇. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24-30. doi: 10.6052/0459-1879-19-279
Feng Jiaxing, Hu Haibao, Lu Bingju, Qin Liping, Zhang Mengzhuo, Du Peng, Huang Xiao. EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. doi: 10.6052/0459-1879-19-279
Citation: Feng Jiaxing, Hu Haibao, Lu Bingju, Qin Liping, Zhang Mengzhuo, Du Peng, Huang Xiao. EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. doi: 10.6052/0459-1879-19-279

超疏水沟槽表面通气减阻实验研究

doi: 10.6052/0459-1879-19-279
基金项目: 1) 国家自然科学基金(51679203);基础前沿项目(JCKY2018*****18);国防科技工业海洋防务技术创新中心创新基金资助.
详细信息
    通讯作者:

    胡海豹

  • 中图分类号: O351.2

EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION

  • 摘要: 减阻是解决航行体提速和增程的主要技术途径之一, 对缓解日益严峻的能源危机极为重要. 在重力式管道实验系统中, 测试给出了湍流状态下不同通气速率时减阻率随雷诺数及沟槽无量纲间距的变化规律和气膜铺展状态, 对比分析了单纯超疏水表面与超疏水沟槽表面上通气时减阻效果的差异.实验板材质为无色亚克力, 沟槽结构采用机械方法加工, 并在表面喷涂超疏水涂层. 结果表明, 持续通气能解决超疏水沟槽表面气膜层流失问题, 实现气膜层长时间稳定维持; 恒定雷诺数下, 随通气速率增大, 超疏水沟槽表面气膜铺展更趋均匀, 减阻率上升; 由于通气速率影响气膜横向扩展能力, 致使恒定通气速率下, 减阻率随雷诺数的变化呈现两种模式; 在固定雷诺数及通气速率时, 减阻率随沟槽尺寸的扩大先增后减, $S^{+}\approx 76$时减阻率最大. 分析其原因在于, 沟槽结构增大沾湿面积的同时, 显著提升了通气状态下超疏水表面气膜层的稳定性, 因而展示出与超疏水表面和沟槽表面均不相同的减阻规律, 且效果更佳.

     

  • [1] Bhushan B, Jung YC . Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 2011,56(1):1-108
    [2] 吕鹏宇, 薛亚辉, 段慧玲 . 超疏水材料表面液-气界面的稳定性及演化规律. 力学进展, 2016,46:179-225
    [2] ( Lü Pengyu, Xue Yahui, Duan Huiling . Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces. Advances in Mechanics, 2016,46:179-225 (in Chinese))
    [3] Lyu S, Nguyen DC, Kim D , et al. Experimental drag reduction study of superhydrophobic surface with dual-scale structures. Applied Surface Science, 2013,286:206-211
    [4] Li Z, Marlena J, Dicky P , et al. A porous superhydrophobic surface with active air plastron control for drag reduction and fluid impalement resistance. Journal of Materials Chemistry A, 2019. 7(27):16387-16396
    [5] 刘铁峰, 王鑫蔚, 唐湛棋 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究. 实验流体力学, 2019,33(3):90-96
    [5] ( Liu Tiefeng, Wang Xinwei, Tang Zhanqi , et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer. Journal of Experimental in Fluid Mechanics, 2019,33(3):90-96 (in Chinese))
    [6] Zhang JX, Yao ZH, Hao PF . Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow. Physical Review E, 2016,94(5):053117
    [7] 李思奇, 刘晓为, 邱成军 等. 用于固液界面减阻无氟超疏水表面制备新方法. 哈尔滨工业大学学报, 2019,51(10):152-156
    [7] ( Li Siqi, Liu Xiaowei, Qiu Chengjun , et al. A new method for fluorine-free superhydrophobic surface used for drag-reduction at solid-liquid interface. Journal of Harbiin institute of Technology, 2019,51(10):152-156 (in Chinese))
    [8] 马国佳, 郑海坤, 常士楠 等. 微纳结构超疏水表面的浸润性分析及设计. 化学学报, 2019,77(3):269-277
    [8] ( Ma Guojia, Zheng Haikun, Chang Shinan , et al. Wettability analysis and design of micro-nanostructured superhydrophobic surface. Acta Chimica Sinica, 2019,77(3):269-277 (in Chinese))
    [9] Ou J, Rothstein JP . Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Physics of Fluids, 2005,17(10):103606
    [10] Hokmabad BV, Ghaemi S . Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure. Physics of Fluids, 2016,28(1):235-256
    [11] Hu HB, Wen J, Bao LY , et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Science Advances, 2017,3(9):e1603288
    [12] Daniello RJ, Waterhouse NE, Rothstein JP . Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids, 2009,21(8):085103
    [13] Forsberg P, Nikolajeff F, Karlsson M . Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 2010,7(1):104-109
    [14] Samaha MA, Tafreshi HV, Gad-El-Hak M . Sustainability of superhydrophobicity under pressure. Physics of Fluids, 2012,24(11):112103
    [15] Emami B, Tafreshi HV, Gad-El-Hak M , et al. Predicting shape and stability of air-water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts. Applied Physics Letters, 2011,98(20):084104
    [16] Xiang YL, Huang SL, Lü PY , et al. Ultimate stable underwater superhydrophobic state. Physical Review Letters, 2017,119(13):134501
    [17] Xu MC, Sun GY, Kim CJ . Infinite lifetime of underwater superhydrophobic states. Physical Review Letters, 2014,113(13):136103
    [18] Shirtcliffe NJ, Mchale G, Newton MI , et al. Plastron properties of a superhydrophobic surface. Applied Physics Letters, 2006,89(10)
    [19] Piao L, Park H . Two-dimensional analysis of air-water interface on superhydrophobic grooves under fluctuating water pressure. Langmuir, 2015,31(29):8022-8032
    [20] Aljallis E, Sarshar MA, Datla R , et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of Fluids, 2013,25(2):025103
    [21] Fu YF, Yuan CQ, Bai XQ . Marine drag reduction of shark skin inspired riblet surfaces. Biosurface and Biotribology, 2017,3(1):11-24
    [22] Martin S, Bhushan B . Modeling and optimization of shark-inspired riblet geometries for low drag applications. Journal of Colloid and Interface Science, 2016,474:206-215
    [23] West N, Sammut K, Tang Y . Material selection and manufacturing of riblets for drag reduction: An updated review. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials Design and Applications, 2018,232(7):610-622
    [24] 李山, 杨绍琼, 姜楠 . 沟槽面湍流边界层减阻的TRPIV测量. 力学学报, 2013,45(2):183-192
    [24] ( Li Shan, Yang Shaoqiong, Jiang Nan . TRPIV Measurement of drag Reduction in the turbulent boundary layer over riblets plate. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):183-192 (in Chinese))
    [25] 崔光耀, 潘翀, 高琪 等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017,49(6):1201-1212
    [25] ( Cui Guangyao, Pan Chong, Gao Qi , et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1201-1212 (in Chinese))
    [26] 李山, 姜楠, 杨绍琼 . 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019,68(7):194-204
    [26] ( Li Shan Jiang Nan, Ya Shaoqiong . Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry. Acta Phys. Sin., 2019,68(7):194-204 (in Chinese))
    [27] Walsh MJ . Drag characteristics of V-groove and transverse curvature riblets. Aiaa Prog. Astronaut. Aeronaut, 1980,72:168-184
    [28] Bechert DW, Bruse M, Hage W , et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997,338(1997):59-87
    [29] Bacher EV, Smith RC . Turbulent boundary-layer modification by surface riblets. AIAA Journal, 1986,24(8):1382-1385
    [30] Choi H, Moin P, Kim J . Active turbulence control for drag reduction in wall-bounded flows. Journal of Fluid Mechanics, 1994,262:75-110
    [31] 王鑫, 李山, 唐湛棋 等. 沟槽对湍流边界层中展向涡影响的实验研究. 实验流体力学, 2018,32(1):55-63
    [31] ( Wang Xin, Li Shan, Tang Zhanqi , et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers. Journal of Experiments in Fluid Mechanics, 2018,32(1):55-63 (in Chinese))
    [32] Wang B, Wang JD, Dou ZL , et al. Investigation of retention of gases in transverse hydrophobic microgrooved surfaces for drag reduction. Ocean Engineering, 2014,79:58-66
    [33] Rowin WA, Hou J, Ghaemi S . Turbulent channel flow over riblets with superhydrophobic coating. Experimental Thermal and Fluid Science, 2018,94:192-204
    [34] Monfared M, Alidoostan MA, Saranjam B . Experimental study on the friction drag reduction of superhydrophobic surfaces in closed channel flow. Journal of Applied Fluid Mechanics, 2019,12(1):69-76
    [35] Bixler GD, Bhushan B . Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Advanced Functional Materials, 2013,23(36):4507-4528
    [36] 董琪琪, 胡海豹, 陈立斌 等. 矩形疏水沟槽表面水滴振荡特性. 力学学报, 2017,49(6):1252-1259
    [36] ( Dong Qiqi, Hu Haibao, Chen Libin , et al. Characteristic of droplet oscillation on the surface of rectangular hydrophobic grooves. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1252-1259 (in Chinese))
    [37] Kumar M, Bhardwaj R, Sahu KC . Motion of a droplet on an anisotropic microgrooved surface. Langmuir, 2019,35(8):2957-2965
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  244
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-11
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回