力学学报, 2020, 52(1): 24-30 DOI: 10.6052/0459-1879-19-279

流体力学

超疏水沟槽表面通气减阻实验研究 1)

冯家兴*, 胡海豹,*,2), 卢丙举, 秦丽萍, 张梦卓*, 杜鹏*, 黄潇*

* 西北工业大学航海学院, 西安710072

中船重工第七一三研究所, 郑州450000

EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION 1)

Feng Jiaxing*, Hu Haibao,*,2), Lu Bingju, Qin Liping, Zhang Mengzhuo*, Du Peng*, Huang Xiao*

* School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

No.713 Research Institute of CSIC, Zhengzhou 450000, China

通讯作者: 2) 胡海豹, 教授, 主要研究方向: 水下仿生与流动控制. E-mail:huhaibao@nwpu.edu.cn

收稿日期: 2019-10-11   接受日期: 2019-12-21   网络出版日期: 2020-01-18

基金资助: 1) 国家自然科学基金.  51679203
基础前沿项目.  JCKY2018*****18
国防科技工业海洋防务技术创新中心创新基金资助.

Received: 2019-10-11   Accepted: 2019-12-21   Online: 2020-01-18

作者简介 About authors

摘要

减阻是解决航行体提速和增程的主要技术途径之一, 对缓解日益严峻的能源危机极为重要. 在重力式管道实验系统中, 测试给出了湍流状态下不同通气速率时减阻率随雷诺数及沟槽无量纲间距的变化规律和气膜铺展状态, 对比分析了单纯超疏水表面与超疏水沟槽表面上通气时减阻效果的差异.实验板材质为无色亚克力, 沟槽结构采用机械方法加工, 并在表面喷涂超疏水涂层. 结果表明, 持续通气能解决超疏水沟槽表面气膜层流失问题, 实现气膜层长时间稳定维持; 恒定雷诺数下, 随通气速率增大, 超疏水沟槽表面气膜铺展更趋均匀, 减阻率上升; 由于通气速率影响气膜横向扩展能力, 致使恒定通气速率下, 减阻率随雷诺数的变化呈现两种模式; 在固定雷诺数及通气速率时, 减阻率随沟槽尺寸的扩大先增后减, $S^{+}\approx 76$时减阻率最大. 分析其原因在于, 沟槽结构增大沾湿面积的同时, 显著提升了通气状态下超疏水表面气膜层的稳定性, 因而展示出与超疏水表面和沟槽表面均不相同的减阻规律, 且效果更佳.

关键词: 超疏水 ; 沟槽 ; 通气 ; 气膜 ; 减阻

Abstract

Drag reduction is one of the main technical approaches to solve the enhancing speed and extending voyage of the vehicle under water, which is extremely crucial to alleviate the increasingly severe energy crisis all over the world. In the gravity pipeline experimental system, drag reduction characteristics with ventilation and gas film spreading state on superhydrophobic groove surfaces are tested and raised in the turbulent state. The variation laws of drag reduction rate with Reynolds number and dimensionless spacing of grooves at different ventilation rates are obtained. In addition, it is the diffierence of ventilation drag reduction that is compared and analyzed between merely superhydrophobic surfaces and superhydrophobic groove surfaces. The material of the experimental plate is colorless acrylic. The groove structure is processed via mechanical method and is sprayed by superhydrophobic coating. Results reveal that continuing ventilation can settle the issue of easy loss of gas film on superhydrophobic groove surface, and the gas film can achieve perennial stabilization. As ventilation rate adds, the gas film spreads more uniformly and drag reduction rate rises under the constant Reynolds number, which result in the notable drag reduction effect. As ventilation rate affects the capability of scaling out of gas film, drag reduction presents two modes with Reynolds number under the constant ventilation rate. When the ventilation rate and the Reynolds number are unchanging, the drag reduction rate firstly increases and then decreases with the expansion of the groove size, and the maximum reduction rate is obtained when $S^{+}\approx 76$. The inherent mechanism on drag reduction characteristics of superhydrophobic groove surfaces with ventilation is that not only the spreadability and stability of gas film layer is enhanced significantly but also the wetted area is increased obviously due to groove structures, meanwhile, the maximum value of drag reduction is larger than both the groove surface and the superhydrophobic surface.

Keywords: superhydrophobic ; groove ; ventilation ; gas film ; drag reduction

PDF (6108KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯家兴, 胡海豹, 卢丙举, 秦丽萍, 张梦卓, 杜鹏, 黄潇. 超疏水沟槽表面通气减阻实验研究 1). 力学学报[J], 2020, 52(1): 24-30 DOI:10.6052/0459-1879-19-279

Feng Jiaxing, Hu Haibao, Lu Bingju, Qin Liping, Zhang Mengzhuo, Du Peng, Huang Xiao. EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF SUPERHYDROPHOBIC GROOVE SURFACES WITH VENTILATION 1). Chinese Journal of Theoretical and Applied Mechanics[J], 2020, 52(1): 24-30 DOI:10.6052/0459-1879-19-279

引言

超疏水减阻是近20年来海洋工程领域关注的一个研究热点[1-8]. Rothstein等[9]直接观测超疏水规则微结构表面气液界面上的流速分布, 得到约20 $\mu$m滑移量和40%减阻量. Ghaemi等[10]发现在湍流状态下气膜层会导致明显的壁面滑移,并引起近壁区雷诺剪应力和正应力下降约15%. 胡海豹等[11]通过在转子壁面构造润湿梯度, 实现连续气环的稳定维持, 在雷诺数660~1320内获得超过70%的稳定减阻量. 保持超疏水表面气膜层的稳定是实现其减阻效果的关键[12]. 但实际上高水压[13-15]、气体扩散[16-18]、压力脉动[19]等因素均会造成超疏水微结构内部气体流失, 减阻失效, 甚至增阻. 尤其在湍流状态下[20], 流动不稳定性和剪切应力的共同作用, 会加速超疏水表面气膜层的破坏, 是目前亟待解决的技术瓶颈.

仿生鲨鱼皮沟槽减阻是另一种受到广泛关注的仿生减阻方法[21-26]. 20世纪70年代, Walsh等[27]发现无量纲尺寸$h^{+}=13$, $S^{+}=15$时, 三角形沟槽表面可减阻8%. Bechert等[28]则发现V型沟槽减阻效果最好, 最大减阻9.9%.Bacher等[29-30]认为反向旋转的流向涡与沟槽尖峰形成的二次涡对相互作用, 能抑制低速条带的展向聚集, 削弱湍流猝发强度. 姜楠等[24,31]也认为沟槽壁面抑制了湍流边界层内流体的法向脉动, 使涡对强度减弱.

若能利用沟槽结构来减弱流动对超疏水表面气膜层的破坏作用, 会大幅提升表面气膜层的稳定性.受此启发, 最近已有学者开始研究超疏水沟槽表面联合减阻. Wang等[32]通过观测横向疏水微沟槽表面气膜发现, 当流速为5 m/s时, 沟槽内气膜可以稳定存在50 min; 流速为11.6 m/s时, 能保持13%的减阻率约1 h, 初步证实超疏水和沟槽的结合拥有很大潜力. Ghaemi等[33]则发现, 无量纲间距$S^{+}=8.6$和17.3的超疏水沟槽板分别具有6%和10.1%的减阻效果.Monfared等[34]在雷诺数300~2769范围内, 测得超疏水沟槽表面减阻率最大可达56.9%.

上述研究说明, 超疏水沟槽表面气膜层比单纯超疏水表面更加稳定, 且在较低雷诺数时减阻效果可观但实际工程应用中, 往往需要表面气膜层和减阻功能能够长期有效. 为此, 本文进一步探索了在超疏水沟槽表面通过通气方式来实现气膜层长时间维持的可行性.

1 实验装置与方法

实验装置主要由上水箱、下水箱、离心泵、管道、流量计、测压和供气装置等组成(如图1). 其中, 上水箱尺寸为1170 mm $\times$ 1720 mm $\times$ 480 mm, 距地面高度3750 mm, 上下水箱通过离心泵和管路连接; 上水箱中水位保持不变, 依靠水的重力势能来驱动水流, 雷诺数调节范围为1.4 $\times$ 10$^{4}$$\sim $5.2 $\times$ 10$^{4}$(以管道水力直径为特征长度). 管道材质为无色亚克力(PMMA), 截面为60 mm $\times$ 20 mm的矩形; 实验平板有效尺寸770 mm $\times$ 60 mm $\times$ 20 mm, 装在管道上端面. 流量计测量范围0.8~15 m$^{3}$/h, 工作压力1.6 mPa; 压力变送器输出信号范围4~20 mA, 非线性误差$\pm $0.2%; 供气气缸直径160 mm、推程1 m, 由交流伺服电机和滚珠丝杠来精细驱动. 实验板表面沟槽高度$H$取1.2 mm, 1.6 mm和2.0 mm, 沟槽宽度取$S=H$, 槽间距取$L=2$ mm. 实验中, 为减小偶然误差, 每个数据重复采集100次.

图 1

图 1   实验装置及沟槽结构示意图

Fig. 1   Experimental apparatus and schematic diagram of groove structure


实验中采用进口商用超疏水涂层(ultra-ever dry)进行表面超疏水处理. 该涂层分底漆、面漆两层, 底漆能与试件表面牢固黏附, 面漆凝固后可形成微纳复合结构, 展现出优越的超疏水效果. 施工时, 采用气动喷枪分两轮进行底漆和面漆喷涂, 且时间间隔不小于30 min. 经测试, 水滴在该超疏水涂层表面接触角可达165$^\circ$, 滚动角小于2$^\circ$.

文中超疏水沟槽板减阻率

$\begin{equation} \label{eq1} DR=\frac{\Delta P_{1}-\Delta P_{2}}{\Delta P_{1}}\times 100\% \end{equation}$

式中, $\Delta P_{1}$和$\Delta P_{2}$分别为光板和超疏水沟槽板对应的管道压降值.

为表征沟槽尺寸的影响, 参照沟槽减阻研究中的处理方法[35], 定义无量纲沟槽宽度$S^{+}$为

$ \begin{eqnarray} \label{eq2} S^+=SV_\tau /\upsilon \end{eqnarray}$

式中, $S$为槽宽, $\upsilon $为运动黏性系数, $V_\tau $则表示光板表面的壁面剪切速度, 其对应表达式为

$ \begin{eqnarray} \label{eq3} &&V_\tau =(\tau _0 /\rho )^{1/2} \end{eqnarray} $
$ \begin{eqnarray} \label{eq4} \tau _0 =0.039 55v^{1/4}\rho V^{7/4}D^{-1/4} \end{eqnarray} $

其中, $\tau _0 $表示光板表面的壁面剪切应力, $V$为平均流速, $\rho $为流体密度, $D$为管道水力直径.

2 结果与分析

2.1 通气速率对减阻的影响

为研究通气对超疏水沟槽表面减阻的影响, 这里详细测试了三种典型尺寸沟槽在一系列不同通气速率($Q_{\rm a})$下的减阻情况. 图2(a)为沟槽宽度$S=1.2$ mm时超疏水沟槽表面压降随雷诺数($Re$)的变化曲线, 其中, "smooth''曲线为光板上的压降. 可以发现, 与光板类似, 超疏水沟槽表面压降与雷诺数呈二次方关系(如图中虚线), 且随$Q_{\rm a}$增大, 曲线整体下移, 减阻效果增强; 不过, 不通气状态下($Q_{\rm a} =0$), 超疏水沟槽表面压降曲线在光板之上, 表现为增阻效果, 说明这种大尺寸沟槽引起的粗糙增阻效应此时占主导作用. 对比图2(b)给出的三种通气速率下超疏水沟槽表面气膜形态可见, $Q_{\rm a}=0$时, 受水流剪切作用, 超疏水表面气膜逐渐流失, 仅在其微结构内部存留少量气体. 在未转变成完全浸润的Wenzel状态前,沟槽内部及槽间均处于Wenzel与Cassie之间的过渡状态, 此时气膜厚度小于表面粗糙颗粒高度; $Q_{\rm a}=2$ mL/s时部分沟槽内已被气体充满, 但槽间仍保持与无通气条件下的状态一致, 说明沟槽对气体有导向和稳定的作用; $Q_{\rm a}=10$ mL/s时超疏水沟槽均被完整的亚毫米级气膜层包覆. 上述不同通气速率下表面气膜形态的变化规律, 正好解释了图2(a)超疏水沟槽表面增阻作用和减阻效果差异的形成原因.

图 2

图 2   压降变化曲线及典型气膜形态

Fig. 2   Pressure drop curve and typical gas film morphology


2.2 沟槽尺寸对减阻的影响

图3为超疏水沟槽表面减阻率随雷诺数及沟槽无量纲宽度$S^{+}$的变化曲线. 从图3(a)和图3(b)可以看出, 恒定通气速率下, 超疏水沟槽表面减阻率随雷诺数的变化表现为两种规律. 在槽宽$S=1.2$ mm的超疏水沟槽表面上(图3(a)), $Q_{\rm a}=1$ mL/s, 2 mL/s, 3 mL/s及4 mL/s时, 随雷诺数增大, 减阻率表现为先减再增后继续减小的规律(规律I); 当增大$Q_{\rm a}$至5 mL/s, 7.5 mL/s及10 mL/s时, 减阻率则表现为先增后减的规律(规律II). 在$S=1.6$ mm的超疏水沟槽表面(图3(b))也存在上述两种规律, 但$Q_{\rm a}=5$ mL/s时与图3(a)不同, 表现为规律I; 当$S$进一步增至2 mm时(图3(c)), 所有$Q_{\rm a}$下均表现为规律I. 可见, 随$S$增大, 规律I对应的通气速率范围扩大. 规律I与规律II产生和转变的原因将在下节详细解释. 同时还发现, 不通气时3种超疏水沟槽表面均表现为增阻效果, 且随沟槽尺寸增大阻力变大, 即大尺寸沟槽引起更大的粗糙增阻作用.

另外, 图3(d)给出了$Re=3.4\times 10^{4}$时沟槽尺寸对减阻效果的影响. 可以发现, 减阻率随槽宽的扩大先增后减, $S^{+}\approx76$时减阻率最大. 这与单纯沟槽表面的减阻规律相似[24], 存在减阻效果最佳的沟槽尺寸, 且适用于实验中的所有通气速率. 不过, 这里对应的最佳无量纲沟槽尺寸远大于公认的单纯沟槽表面的最优无量纲尺寸($\approx$$15$), 这是由二者不同的减阻原理导致的.

图 3

图 3   超疏水沟槽表面减阻率随雷诺数及$S^{+}$变化(线条表示趋势线)

Fig. 3   The variation of drag reduction rate with Reynolds number and$ S^{+}$(Lines indicate trend lines)


2.3 气膜铺展状态分析

这里以$S=1.2$ mm的超疏水沟槽表面气膜铺展状态为对象对上节减阻规律I和II进行分析. 图4(a) ~图4(c)分别为$Q_{\rm a}=10$ mL/s, $Re=1.4\times 10^{4}$, $Re=3.4\times 10^{4}$和$Re=5.2\times 10^{4}$时气膜状态(从图3(a)知对应于规律II), 其中反光部分为气膜层. 图4(a)中, $Re=1.4\times 10^{4}$时超疏水沟槽表面上气膜完整铺展, 且有少量富裕气体以形状不一的气泡形式分布在其表面, 这可能导致少量的额外阻力.图4(b)中, $Re$增大到$3.4\times 10^{4}$时, 因高水速带走更多的气体, 使得超疏水沟槽表面气膜铺展更趋均匀、平整, 此时减阻更佳. 但继续增大$Re$至$5.2\times 10^{4}$时(图4(c)), 均匀铺展的气膜层会在高速水流冲刷作用下产生局部破损, 导致气液面积比有所减小, 减阻率降低.

图4(d) ~图4(f)分别表示$Q_{\rm a}=4$ mL/s, $Re=2.7\times 10^{4}$, $Re=3.4\times 10^{4}$和$Re=4.0\times 10^{4}$时表面气膜铺展状态(对应于规律I). 观察图4(d)发现, $Re=2.7\times10^{4}$时沟槽结构引起的展向能垒[36-37]和水流冲刷的共同作用下, 使得通入气体仅在少数沟槽内沿流向铺展和移动, 未实现大面积展向铺展. 此时少数沟槽表面气膜减阻作用与多数无气膜覆盖沟槽引起的粗糙增阻效应同时存在,致使减阻率低.$Re$增大到$3.4\times 10^{4}$时(图4(e)), 管道内增强的湍流横向脉动和剪切作用致使少数沟槽表面气膜克服了展向能垒, 发生部分展向铺展, 气膜层覆盖的沟槽条数明显增加, 减阻率上升. 继续增大$Re$至$4.0\times 10^{4}$时(图4(f))发现, 此时在强横向扰动的作用下, 气膜已均匀展向铺展到整个超疏水沟槽表面, 表现出最佳的减阻效果. 当进一步增大$Re$时, 则会出现类似图4(c)的现象, 因高水速带来的大气量流失, 使得均匀铺展的气膜层受到破坏, 减阻率降低.

图 4

图 4   超疏水沟槽板表面气膜铺展状态

Fig. 4   The spreading state of gas film on superhydrophobic groove surfaces


2.4 与单纯超疏水表面通气减阻的对比

上述研究结果说明超疏水沟槽表面通气确实有利于表面气膜稳定, 但这种大尺寸沟槽会造成额外的增阻作用. 为更全面评价其减阻效果, 图5进一步给出了典型通气速率下单纯超疏水表面(SHS)与超疏水沟槽表面减阻率的对比. 从图5可以发现, 与超疏水沟槽表面展现的减阻规律I、规律II不同, 单纯超疏水表面减阻率均呈现单调降低趋势; 值得注意的是, 单纯超疏水表面仅在较低雷诺数时有减阻优势, 但较高雷诺数下超疏水沟槽表面具有更优异的减阻性能; 通气速率$Q_{\rm a}=1$ mL/s, 7.5 mL/s时, 超疏水沟槽表面分别在雷诺数大于$4.0\times 10^{4}$, $2.7\times 10^{4}$时展现大于超疏水表面的减阻效果, 这说明随$Q_{\rm a}$增大, 超疏水沟槽表面上有减阻优势的雷诺数范围扩大. 由此可见, 超疏水表面与沟槽的复合既有利于气膜稳定, 还能增强减阻.

图 5

图 5   通气时超疏水和超疏水沟槽表面减阻对比(线条为趋势线)

Fig. 5   Comparison of drag reduction rate between superhydrophobic and superhydrophobic groove surface under ventilation state(lines are trend lines)


图 5

图 5   通气时超疏水和超疏水沟槽表面减阻对比(线条为趋势线) (续)

Fig. 5   Comparison of drag reduction rate between superhydrophobic and superhydrophobic groove surface under ventilation state(Lines are trend lines) (continued)


3 结论

通过开展超疏水沟槽表面通气减阻实验, 分析其减阻规律以及气膜铺展状态, 发现:

(1)通气是长期维持超疏水沟槽表面气膜层和减阻性能的一种有效方式, 且在固定流动条件下存在减阻效果最佳的通气速率.

(2)与单纯沟槽减阻类似, 随沟槽尺寸扩大, 超疏水沟槽表面减阻率先增后减, 最优无量纲沟槽宽度$S^{+}\approx 76$.

(3)与单纯超疏水表面通气不同, 高雷诺数下超疏水沟槽表面既有利于气膜稳定束缚, 还可以增强减阻效果, 是一种潜在的新型稳定减阻手段.

另外, 受实验装置的限制, 论文未测试出超疏水沟槽表面通气状态下气液界面形态与边界层流场, 相关研究仍有待进一步深入.

参考文献

Bhushan B, Jung YC .

Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction

Progress in Materials Science, 2011,56(1):1-108

[本文引用: 1]

吕鹏宇, 薛亚辉, 段慧玲 .

超疏水材料表面液-气界面的稳定性及演化规律

力学进展, 2016,46:179-225

( Pengyu, Xue Yahui, Duan Huiling .

Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces

Advances in Mechanics, 2016,46:179-225 (in Chinese))

Lyu S, Nguyen DC, Kim D , et al.

Experimental drag reduction study of superhydrophobic surface with dual-scale structures

Applied Surface Science, 2013,286:206-211

Li Z, Marlena J, Dicky P , et al.

A porous superhydrophobic surface with active air plastron control for drag reduction and fluid impalement resistance

Journal of Materials Chemistry A, 2019. 7(27):16387-16396

刘铁峰, 王鑫蔚, 唐湛棋 .

超疏水表面对湍流边界层相干结构影响的TRPIV实验研究

实验流体力学, 2019,33(3):90-96

( Liu Tiefeng, Wang Xinwei, Tang Zhanqi , et al.

TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer

Journal of Experimental in Fluid Mechanics, 2019,33(3):90-96 (in Chinese))

Zhang JX, Yao ZH, Hao PF .

Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

Physical Review E, 2016,94(5):053117

李思奇, 刘晓为, 邱成军 .

用于固液界面减阻无氟超疏水表面制备新方法

哈尔滨工业大学学报, 2019,51(10):152-156

( Li Siqi, Liu Xiaowei, Qiu Chengjun , et al.

A new method for fluorine-free superhydrophobic surface used for drag-reduction at solid-liquid interface

Journal of Harbiin institute of Technology, 2019,51(10):152-156 (in Chinese))

马国佳, 郑海坤, 常士楠 .

微纳结构超疏水表面的浸润性分析及设计

化学学报, 2019,77(3):269-277

[本文引用: 1]

( Ma Guojia, Zheng Haikun, Chang Shinan , et al.

Wettability analysis and design of micro-nanostructured superhydrophobic surface

Acta Chimica Sinica, 2019,77(3):269-277 (in Chinese))

[本文引用: 1]

Ou J, Rothstein JP .

Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces

Physics of Fluids, 2005,17(10):103606

[本文引用: 1]

Hokmabad BV, Ghaemi S .

Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure

Physics of Fluids, 2016,28(1):235-256

[本文引用: 1]

Hu HB, Wen J, Bao LY , et al.

Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

Science Advances, 2017,3(9):e1603288

[本文引用: 1]

Daniello RJ, Waterhouse NE, Rothstein JP .

Drag reduction in turbulent flows over superhydrophobic surfaces

Physics of Fluids, 2009,21(8):085103

[本文引用: 1]

Forsberg P, Nikolajeff F, Karlsson M .

Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure

Soft Matter, 2010,7(1):104-109

[本文引用: 1]

Samaha MA, Tafreshi HV, Gad-El-Hak M .

Sustainability of superhydrophobicity under pressure

Physics of Fluids, 2012,24(11):112103

Emami B, Tafreshi HV, Gad-El-Hak M , et al.

Predicting shape and stability of air-water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts

Applied Physics Letters, 2011,98(20):084104

[本文引用: 1]

Xiang YL, Huang SL, PY , et al.

Ultimate stable underwater superhydrophobic state

Physical Review Letters, 2017,119(13):134501

[本文引用: 1]

Xu MC, Sun GY, Kim CJ .

Infinite lifetime of underwater superhydrophobic states

Physical Review Letters, 2014,113(13):136103

Shirtcliffe NJ, Mchale G, Newton MI , et al.

Plastron properties of a superhydrophobic surface

Applied Physics Letters, 2006,89(10)

[本文引用: 1]

Piao L, Park H .

Two-dimensional analysis of air-water interface on superhydrophobic grooves under fluctuating water pressure

Langmuir, 2015,31(29):8022-8032

[本文引用: 1]

Aljallis E, Sarshar MA, Datla R , et al.

Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow

Physics of Fluids, 2013,25(2):025103

[本文引用: 1]

Fu YF, Yuan CQ, Bai XQ .

Marine drag reduction of shark skin inspired riblet surfaces

Biosurface and Biotribology, 2017,3(1):11-24

[本文引用: 1]

Martin S, Bhushan B .

Modeling and optimization of shark-inspired riblet geometries for low drag applications

Journal of Colloid and Interface Science, 2016,474:206-215

West N, Sammut K, Tang Y .

Material selection and manufacturing of riblets for drag reduction: An updated review.

Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials Design and Applications, 2018,232(7):610-622

李山, 杨绍琼, 姜楠 .

沟槽面湍流边界层减阻的TRPIV测量

力学学报, 2013,45(2):183-192

[本文引用: 2]

( Li Shan, Yang Shaoqiong, Jiang Nan .

TRPIV Measurement of drag Reduction in the turbulent boundary layer over riblets plate

Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):183-192 (in Chinese))

[本文引用: 2]

崔光耀, 潘翀, 高琪 .

沟槽方向对湍流边界层流动结构影响的实验研究

力学学报, 2017,49(6):1201-1212

( Cui Guangyao, Pan Chong, Gao Qi , et al.

Flow structure in the turbulent boundary layer over directional riblets surfaces

Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1201-1212 (in Chinese))

李山, 姜楠, 杨绍琼 .

正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究

物理学报, 2019,68(7):194-204

[本文引用: 1]

( Li Shan Jiang Nan, Ya Shaoqiong .

Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry

Acta Phys. Sin., 2019,68(7):194-204 (in Chinese))

[本文引用: 1]

Walsh MJ .

Drag characteristics of V-groove and transverse curvature riblets

Aiaa Prog. Astronaut. Aeronaut, 1980,72:168-184

[本文引用: 1]

Bechert DW, Bruse M, Hage W , et al.

Experiments on drag-reducing surfaces and their optimization with an adjustable geometry

Journal of Fluid Mechanics, 1997,338(1997):59-87

[本文引用: 1]

Bacher EV, Smith RC .

Turbulent boundary-layer modification by surface riblets

AIAA Journal, 1986,24(8):1382-1385

[本文引用: 1]

Choi H, Moin P, Kim J .

Active turbulence control for drag reduction in wall-bounded flows

Journal of Fluid Mechanics, 1994,262:75-110

[本文引用: 1]

王鑫, 李山, 唐湛棋 .

沟槽对湍流边界层中展向涡影响的实验研究

实验流体力学, 2018,32(1):55-63

[本文引用: 1]

( Wang Xin, Li Shan, Tang Zhanqi , et al.

An experimental study on riblet-induced spanwise vortices in turbulent boundary layers

Journal of Experiments in Fluid Mechanics, 2018,32(1):55-63 (in Chinese))

[本文引用: 1]

Wang B, Wang JD, Dou ZL , et al.

Investigation of retention of gases in transverse hydrophobic microgrooved surfaces for drag reduction

Ocean Engineering, 2014,79:58-66

[本文引用: 1]

Rowin WA, Hou J, Ghaemi S .

Turbulent channel flow over riblets with superhydrophobic coating

Experimental Thermal and Fluid Science, 2018,94:192-204

[本文引用: 1]

Monfared M, Alidoostan MA, Saranjam B .

Experimental study on the friction drag reduction of superhydrophobic surfaces in closed channel flow

Journal of Applied Fluid Mechanics, 2019,12(1):69-76

[本文引用: 1]

Bixler GD, Bhushan B .

Fluid drag reduction with shark-skin riblet inspired microstructured surfaces

Advanced Functional Materials, 2013,23(36):4507-4528

[本文引用: 1]

董琪琪, 胡海豹, 陈立斌 .

矩形疏水沟槽表面水滴振荡特性

力学学报, 2017,49(6):1252-1259

[本文引用: 1]

( Dong Qiqi, Hu Haibao, Chen Libin , et al.

Characteristic of droplet oscillation on the surface of rectangular hydrophobic grooves

Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1252-1259 (in Chinese))

[本文引用: 1]

Kumar M, Bhardwaj R, Sahu KC .

Motion of a droplet on an anisotropic microgrooved surface

Langmuir, 2019,35(8):2957-2965

[本文引用: 1]

/