EI、Scopus 收录

 引用本文: 陈少林, 郭琪超, 周国良. 核电结构土-结相互作用分析分区混合计算方法[J]. 力学学报, 2020, 52(1): 258-282.
Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282.
 Citation: Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282.

## PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE

• 摘要: 土-结构相互作用分析是核电结构进行抗震设计和安全评估的重要环节.在核电结构的土-结相互作用分析中,阻尼和非线性是影响结构反应的重要因素. 若采用频域分析,可以方便考虑阻尼,但需通过等效线性化来考虑非线性,不适合于强震作用下的土体非线性.若采用时域分析的逐步积分方法,适合于考虑非线性,但材料阻尼一般采用瑞利阻尼模型,除了紧靠指定阻尼比的少数几个振型外,其他振型的反应将受到瑞利阻尼模型所确定的大阻尼所抑制,造成地震反应与真实情形有较大差异.若采用时域分析的模态叠加法,可合理计入阻尼效应,但模态叠加法不能考虑非线性.因此,如何合理考虑阻尼和非线性是核电结构土-结相互作用分析需要关注的问题.基于此,本文提出一种模态叠加和时步积分结合的土-结相互作用分区算法.其中,出于安全性考虑,地震作用下核电主体结构一般不允许进入非线性,因此结构可采用模态叠加方法,以便合理考虑结构阻尼;土体和基础采用显式时步积分法,可考虑土体非线性;通过人工边界条件考虑无限域的影响 (辐射阻尼).通过简单算例对该方法进行了验证,并用于CAP1400核电结构的土-结相互作用分析中,对比分析了采用模态阻尼和瑞利阻尼时核电结构和场地反应的差异,结果表明结构阻尼模型对场地的反应影响不大,但对结构反应影响明显,在实际工程中应合理选取阻尼模型.

Abstract: Soil-structure interaction analysis is an important step in seismic design and safety assessment of nuclear power structures. Material damping and non-linearity are important factors affecting the structural response in the analysis of soil-structure dynamic interaction of nuclear power structures. If the frequency-domain method is used, the damping can be easily considered, but the equivalent linearization is needed to consider the non-linearity, which is not suitable for strong earthquakes, The time-step integration method is suitable for considering non-linearity, but Rayleigh damping model is generally used for material damping. Except for a few modes with specified damping ratio, the response of other modes will be restrained by the large damping determined by Rayleigh damping model, which makes the seismic response quite different from the real situation. If the modal superposition method is used, the damping effect can be reasonably taken into account, but the non-linearity can not be taken into account in the modal superposition method. Therefore, how to reasonably consider the damping and non-linearity is an important issue in the soil-structure interaction analysis of nuclear power structures. Considering that the main structure of nuclear power plant is rigid, and it is not easy to enter the non-linearity under earthquake, a new method for soil-structure interaction analysis is proposed in this paper. The modal superposition method is used to structure analysis, and the soil and foundation is analyzed by the explicit time-step integration method, the influence of infinite domain (radiation damping) is considered through artificial boundary conditions. This partitioned algorithm of soil-structure interaction based on modal superposition and time-step integration is realized, and verified by a simple example. Then, the soil-structure interaction analysis of a CAP1400 nuclear power structure is conducted, with the modal damping and Rayleigh damping are adopted respectively. The difference between modal damping and Rayleigh damping on the structure and site response is compared and analyzed. The results show that the structural damping model has little effect on the site response, but has obvious effect on the structure response.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈