EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

被均匀流缓慢调制的有限水深毛细重力波

李少峰 宋金宝

李少峰, 宋金宝. 被均匀流缓慢调制的有限水深毛细重力波[J]. 力学学报, 2020, 52(1): 40-50. doi: 10.6052/0459-1879-19-268
引用本文: 李少峰, 宋金宝. 被均匀流缓慢调制的有限水深毛细重力波[J]. 力学学报, 2020, 52(1): 40-50. doi: 10.6052/0459-1879-19-268
Li Shaofeng, Song Jinbao. GRAVITY-CAPILLARY WAVES SLOWLY MODULATED BY UNIFORM FLOW IN FINITE WATER DEPTH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 40-50. doi: 10.6052/0459-1879-19-268
Citation: Li Shaofeng, Song Jinbao. GRAVITY-CAPILLARY WAVES SLOWLY MODULATED BY UNIFORM FLOW IN FINITE WATER DEPTH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 40-50. doi: 10.6052/0459-1879-19-268

被均匀流缓慢调制的有限水深毛细重力波

doi: 10.6052/0459-1879-19-268
基金项目: 1) 国家重点基础研究发展计划(2016YFC1401404);国家自然科学基金(41830533)
详细信息
    通讯作者:

    宋金宝

  • 中图分类号: O352

GRAVITY-CAPILLARY WAVES SLOWLY MODULATED BY UNIFORM FLOW IN FINITE WATER DEPTH

  • 摘要: 非线性的存在会产生高次谐波,这些谐波又反作用于原来的低次谐波,使波幅发生缓慢变化,从而产生缓慢调制现象.这里从考虑均匀流作用下的毛细重力水波基本方程出发,在不可压缩、无旋、无黏条件假设下,使用多重尺度分析方法推导出了在均匀流影响下有限深水毛细重力波振幅所满足的非线性Schrödinger方程(NLSE).分析了NLSE解的调制不稳定性.给出了毛细重力波调制不稳定的条件和钟型孤立波产生的条件.分析了无量纲最大不稳定增长率随无量纲水深和表面张力的变化趋势.同时给出了无量纲不稳定增长率随无量纲微扰动波数变化的曲线,呈现出了先增大后减小的趋势.最后指出均匀顺流减小了无量纲不稳定增长率及最大增长率,逆流增大了它们.由表面张力作用产生的毛细波及重力与表面张力共同作用产生的毛细重力波,与流的相互作用可以改变海表粗糙度和海洋上层流场结构,进而影响海气界面动量、热量及水汽的交换.了解海表这些短波动力机制,对卫星遥感的精确测量、海气相互作用的研究及海气耦合模式的改进等有重要意义.

     

  • [1] Larraza A, Putterman S . Theory of non-propagating surface-wave solitons. Journal of Fluid Mechanics, 1984,148:443-449
    [2] Djordjevic AD, Redekopp LG . On two-dimensional packets of capillary-gravity waves. Journal of Fluid Mechanics, 1977,79:703-714
    [3] 刘应中, 张乐 . 摄动理论在船舶流体力学中的应用. 上海: 上海交通大学出版社, 1991
    [3] ( Liu Yingzhong, Zhang Le. Application of Perturbation Theory in Ship Fluid Mechanics. Shanghai: Shanghai Jiaotong University Press, 1991 (in Chinese))
    [4] 李家春 . 深水波理论的新进展. 力学进展, 1986,16(2):175-184
    [4] ( Li Jiachun . Modern development on deep water waves. Advance in Mechanics, 1986,16(2):175-184 (in Chinese))
    [5] 李家春 . 非线性力学与计算. 力学进展, 1993,23(3):318-326
    [5] ( Li Jiachun . Nonlinear mechanics and computation. Advance in Mechanics, 1993,23(3):318-326 (in Chinese))
    [6] 王本仁, 魏荣爵 . 二模振荡激励下水槽中的孤立波. 物理学报, 1986,35(12):1547-1555
    [6] ( Wang Benren, Wei Rongjue . The solitary waves in trough excited by two frequency modes. Acta Physica Sinica, 1986,35(12):1547-1555 (in Chinese))
    [7] 周显初, 崔洪农, 向隆万 . 考虑表面张力的非传播孤立波. 力学学报, 1991,23(6):666-673
    [7] ( Zhou Xianchu, Cui Hongnong, Xiang Longwan . Non-propagating solitary waves with the consideration of surface tension. Chinese Journal of Theoretical and Applied Mechanics, 1991,23(6):666-673 (in Chinese))
    [8] 周显初 . 非传播孤立波和表面张力. 力学学报, 1998,30(6):672-675
    [8] ( Zhou Xianchu . Non-propagating soliton and surface tension. Chinese Journal of Theoretical and Applied Mechanics, 1998,30(6):672-675 (in Chinese))
    [9] 颜家壬, 黄国翔 . 计及表面张力的非传播孤波理论. 应用数学和力学, 1987,8(10):925-929
    [9] ( Yan Jiaren, Huang Guoxiang . Theory of non-propagation solitons including surface-tension effects. Applied Mathematics and Mechanics, 1987,8(10):925-929 (in Chinese))
    [10] Takuji K . Nonlinear interaction between short and long capillary-gravity waves. Journal of the Physical Society of Japan, 1975,39(5):1379-1386
    [11] Dias F, Kharif C . Nonlinear gravity and capillary-gravity waves. Annual Review of Fluid Mechanics, 1999,31:301-346
    [12] Parau EI, Vanden-Broeck MJ, Cooker MJ . Nonlinear three-dimensional gravity-capillary solitary waves. Journal of Fluid Mechanics, 2005,536:99-105
    [13] Vanden-Broeck MJ, Dias F . Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. Journal of Fluid Mechanics, 1992,240:549-557
    [14] Kang Y, Vanden-Broeck MJ . Gravity-capillary waves in the presence of constant vorticity. European Journal of Mechanics B-Fluids, 2000,19:253-268
    [15] Wahlen E . Steady periodic capillary-gravity waves with vorticity. SIAM Journal on Mathematical Analysis, 2006,38(3):921-943
    [16] Wahlen E . Steady periodic capillary waves with vorticity. Arkiv for Mathematics, 2006,44:367-387
    [17] Wahlen E . On rotational water waves with surface tension. Philosophical Transactions of the Royal Society A, 2007,365:2215-2225.
    [18] Martin CI . Resonant interactions of capillary-gravity water waves. Journal of Mathematical Fluid Mechanics, 2017,19(4):807-817
    [19] Martin CI, Matioc BV . Existence of capillary-gravity water waves with piecewise constant vorticity. Journal of Differential Equations, 2014,256:3086-3114
    [20] Tiron R, Choi W . Linear stability of finite-amplitude capillary waves on water of infinite depth. Journal of Fluid Mechanics, 2012,696:402-422
    [21] Li JC, Hui WH, Donelan MA . In Nonlinear Water Waves. Berlin and Heidelberg: Spring-Verlag, 1987
    [22] Sedletsky YV . The modulational instability of Stokes waves on the surface of finite-depth fluid. Physics Letters A, 2005,343:293-299
    [23] Liao B, Dong G, Ma Y , et al. Linear-shear-current modified Schr?dinger equation for gravity waves in finite water depth. Physical Review E, 2017,96:043111
    [24] Li SF, Chen J, Cao AZ , et al. A nonlinear Schr?dinger equation for gravity waves slowly modulated by linear shear flow. Chinese Physics B, 2019,28:124701
    [25] Hsu HC, Kharif C, Abid M , et al. A nonlinear Schr?dinger equation for gravity-capillary water waves on arbitrary depth with constant vorticity. Part 1. Journal of Fluid Mechanics, 2018,854:146-163
    [26] 张卓, 宋志尧, 孔俊 . 波流共同作用下流速垂线分布及其影响因素分析. 水科学进展, 2010,21(6):801-807
    [26] ( Zhang Zhuo, Song Zhiyao, Kong Jun . Wave-current interaction effects on velocity profiles and influencing factor analysis. Advances in Water Science, 2010,21(6):801-807 (in Chinese))
    [27] 文锋, 王建华 . 二维均匀流与重力短峰波相互作用解析. 物理学报, 2014,63(9):094701 (in Chinese))
    [27] ( Wen Feng, Wang Jianhua . An analytical solution for the interaction of two-dimensional currents and gravity short-crest waves. Acta Physica Sinica, 2014,63(9):094701 (in Chinese))
    [28] 徐振山, 陈永平, 张长宽 等. 波流环境中射流的大涡数值模拟. 水科学进展, 2014,25(2):239-245 (in Chinese))
    [28] ( Xu Zhenshan, Chen Yongping, Zhang Changkuan , et al. Large eddy simulation of a jet in wave-current environment. Advances in Water Science, 2014,25(2):239-245 (in Chinese))
    [29] 丁阳, 马瑞, 李宁 . 三维波流耦合水槽模拟模型. 工程力学, 2015,32(10):68-74
    [29] ( Ding Yang, Ma Rui, Li Ning . A simulation model for three-dimensional coupled wave-current flumes. Engineering Mechanics, 2015,32(10):68-74 (in Chinese))
    [30] 柏君励, 马宁, 顾解忡 . 波流对不同淹没深度水平圆柱的载荷分析. 上海交通大学学报, 2018,52(8):938-945
    [30] ( Bai Junli, Ma Ning, Gu Xiechong . Wave-current loads on the horizontal cylinder with varying submergence depths. Journal of Shanghai Jiao Tong University, 2018,52(8):938-945 (in Chinese))
    [31] 匡翠萍, 韩雪健, 李文斌 等. 波流对人工岬头和海滩养护工程的响应. 同济大学学报 (自然科学版), 2019,47(3):339-346
    [31] ( Kuang Cuiping, Han Xuejian, Li Wenbin , et al. Responses of wave and current to artificial headlands and a beach nourishment project. Journal of Tongji University (Natural Science), 2019,47(3):339-346 (in Chinese))
    [32] 任智源, 侯京明, 王培涛 等. 精细化地震海啸波流实时预警系统研究与应用, 2019,41(9):145-155
    [32] ( Ren Zhiyuan, Hou Jingming, Wang Peitao , et al. Study and application of the refined tsunami real time warning system including tsunamigenic wave and current. Haiyang Xuebao, 2019,41(9):145-155 (in Chinese))
    [33] 徐祥德, 冉令坤 . 波流相互作用与波动传播模态. 大气科学, 2007,31(6):1237-1250
    [33] ( Xu Xiangde, Ran Lingkun . Wave-flow interaction and wave-propagation modes. Chinese Journal of Atmospheric Sciences, 2007,31(6):1237-1250 (in Chinese))
    [34] 徐俊丽, 宋金宝 . 高频表面波对定常Ekman流解的影响. 海洋与湖沼, 2014,45(1):197-205
    [34] ( Xu Junli, Song Jinbao . Effects of high frequency surface waves on the steady Ekman current solutions. Oceanologia Et Limnologia Sinica, 2014,45(1):197-205 (in Chinese))
    [35] 杨衡, 孙龙泉, 刘莹 等. 波流作用下圆柱体入水特性的三维数值模拟研究. 船舶力学, 2015,19(10):1186-1196
    [35] ( Yang Heng, Sun Longquan, Liu Ying , et al. 3D numerical simulation on water entry of cylindrical under wave and stream action. Journal of Ship Mechanics, 2015,19(10):1186-1196 (in Chinese))
    [36] 魏艳, 王赤忠 . 二阶波-流和结构物相互作用的高阶有限元分析. 华中科技大学学报(自然科学版), 2018,46(6):99-104
    [36] ( Wei Yan, Wang Chizhong . Second order wave interactions with body in current through higher order finite element method. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018,46(6):99-104 (in Chinese))
    [37] 程永舟, 吕行, 王文森 等. 波流作用下大直径淹没圆柱局部冲刷实验研究. 水科学进展, 2019,30(6):872-881
    [37] ( Cheng Yongzhou, Lü Xing, Wang Wensen , et al. Experimental study on local scour around large- diameter submerged cylinders under combined waves and current action. Advances in Water Science, 2019,30(6):872-881 (in Chinese))
    [38] 程永舟, 吕行, 王文森 等. 波流作用下淹没圆柱局部冲深影响因素分析. 水利水运工程学报, 2019, ( 6):69-76
    [38] ( Cheng Yongzhou, Lü Xing, Wang Wensen , et al. Research on the influencing factors of scour depth around submerged cylinder under combined action of wave and current. Hydro-science and Engineering, 2019, ( 6):69-76 (in Chinese))
    [39] 文圣常, 余宙文 . 海浪理论与计算原理. 北京: 科学出版社, 1985
    [39] ( Weng Shenchang, Yu Zhouwen. Wave Theory and Calculation Principle. Beijing: Science Press, 1985 (in Chinese))
    [40] Yan JR, You JQ . Wu's solition in a sloping trough. Chinese Physics Letters, 1990,7(9):406-409
    [41] 梅强中 . 水波动力学. 北京: 科学出版社, 1984
    [41] ( Mei Qiangzhong Mei Qiangzhong. Water Wave Dynamics. Beijing: Science Press, 1984 (in Chinese))
    [42] 颜家壬, 周川汇, 钟建新 等. 表面张力、黏性和驱动对非传播表面孤立波的影响. 力学学报, 1994,26(2):158-164
    [42] ( Yan Jiaren, Zhou Chuanhui, Zhong Jianxin , et al. Effect of surface tension, viscosity and driving on the non-propagating solitary surface waves. Chinese Journal of Theoretical and Applied Mechanics, 1994,26(2):158-164 (in Chinese))
    [43] Thomas R, Kharif C, Manna M . A nonlinear Schr?dinger equation for water waves on finite depth with constant vorticity. Physics of Fluids, 2012,24(12):127102
  • 加载中
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  151
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回