EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

论轮式移动结构的非完整约束及其运动控制

周宇生 文相容 王在华

周宇生, 文相容, 王在华. 论轮式移动结构的非完整约束及其运动控制[J]. 力学学报, 2020, 52(4): 1143-1156. doi: 10.6052/0459-1879-19-257
引用本文: 周宇生, 文相容, 王在华. 论轮式移动结构的非完整约束及其运动控制[J]. 力学学报, 2020, 52(4): 1143-1156. doi: 10.6052/0459-1879-19-257
Zhou Yusheng, Wen Xiangrong, Wang Zaihua. ON THE NONHOLONOMIC CONSTRAINTS AND MOTION CONTROL OF WHEELED MOBILE STRUCTURES1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1143-1156. doi: 10.6052/0459-1879-19-257
Citation: Zhou Yusheng, Wen Xiangrong, Wang Zaihua. ON THE NONHOLONOMIC CONSTRAINTS AND MOTION CONTROL OF WHEELED MOBILE STRUCTURES1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1143-1156. doi: 10.6052/0459-1879-19-257

论轮式移动结构的非完整约束及其运动控制

doi: 10.6052/0459-1879-19-257
基金项目: 1)国家自然科学基金项目(11802065);贵州省科技计划项目(黔科合基础[2018]1047,黔科合平台人才[2018]5781)
详细信息
    通讯作者:

    周宇生

  • 中图分类号: O313

ON THE NONHOLONOMIC CONSTRAINTS AND MOTION CONTROL OF WHEELED MOBILE STRUCTURES1)

  • 摘要: 当质点沿光滑曲线运动时,必须满足横向速度为零的条件.同样地,不同轮式移动结构在平面上做光滑曲线运动时都需要满足该非完整约束条件.本文结合轮子转速和它们运动速度的完整约束关系,理清各轮式移动结构的完整和非完整约束,然后利用 Euler-Lagrange 方程方便地推导出相应的动力学方程.另外,通过该非完整约束,将目标轨迹曲线转化为速度目标的形式,然后引入目标轨迹曲线的相对曲率设计合适的动态跟踪目标.进一步,通过采用该动态跟踪目标可以将轮式移动结构的运动规律和动力学方程有机结合起来,并将原运动任务简化为一般的 轨迹 控制问题.基于该动态跟踪目标可以为轮式移动结构设计合适的鲁棒跟踪控制器,通过跟踪目标轨迹曲线的相对曲率来实现对目标曲线的精确跟踪.最后,理论分析和仿真结果显示,采用动态目标跟踪方法能够从根本上解决初始速度误差过大和位置误差不断被累积的问题,即使前向速度误差系统不稳定的,实际运动轨迹也几乎能和目标轨迹曲线重合.

     

  • [1] Chan RPM, Stol KA, Halkyard CR. Review of modelling and control of two-wheeled robots. Annual Reviews in Control, 2013,37(1):89-103
    [2] Li ZJ, Yang CG, Fan LP. Advanced Control of Wheeled Inverted Pendulum Systems. London, Springer, 2013
    [3] Cui RX, Guo J, Mao ZY. Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dynamics, 2015,79(1):501-511
    [4] 阮晓钢, 蔡建羡, 李欣源 等. 两轮自平衡机器人的研究与设计. 北京: 科学出版社, 2012: 1-12
    [4] ( Ruan Xiaogang, Cai Jianxin, Li Xinyuan, et al. The Study and Design of Two-Wheeled Self-Balancing Robot. Beijing: Science Press, 2012: 1-12(in Chinese))
    [5] Grasser F, D'Arrigo A, Colombi S, et al. JOE: A mobile inverted pendulum. IEEE Transaction on Industrial Electronics, 2012,49(1):107-114
    [6] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望. 自动化学报, 2009,35(6):650-667
    [6] ( Hou Zhongsheng, Xu Jianxin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009,35(6):650-667 (in Chinese))
    [7] 谭跃刚. 非完整机器人的原理与控制. 北京: 科学出版社, 2011: 12-32
    [7] ( Tan Yuegang. The Principle and Control of Nonholonomic Robots. Beijing: Science Press, 2011: 12-32(in Chinese))
    [8] 胡海岩. 论力学系统的自由度. 力学学报, 2018,50(5):1135-1144
    [8] ( Hu Haiyan. On the degrees of freedom of a mechanical system. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1135-1144 (in Chinese))
    [9] 葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法. 力学学报, 2018,50(4):871-879
    [9] ( Ge Yimin, Yuan Haihui, Gan Chunbiao. Control method of an underactuated biped robot based on gait transition. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):871-879 (in Chinese))
    [10] 付晓东, 陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报, 2020,52(1):171-183
    [10] ( Fu Xiaodong, Chen Li. An input limited repetitive learning control of flexible-base two-flexible-link and two-flexible-joint space robot with integration of motion and vibration. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):171-183 (in Chinese))
    [11] Bloch AM, Bailliewl J, Crouch P, et al. Nonholonomic Mechanics and Control. Second Edition, New York: Springer-verlag, 2004
    [12] Liu HG, Shi DH. Optimal control of a mobile robot on sphere. Theoretical & Applied Mechanics Letters, 2019,9(1):34-38
    [13] Murry RM, Sastry SS. Nonholonomic motion planning: Steering using sinusoids. IEEE Transaction on Automatic Control, 1993,38(5):700-716
    [14] Godhavn J, Egeland O. A Lyapunov approach to exponential stabilization of nonholonomic systems in power form. IEEE Transactions on Automatic Control, 1997,42(7):1028-1032
    [15] Tilbury R, Murray RM, Sastry SS. Trajectory generation for the n-trailer problem using goursat normat form. IEEE Transactions on Automatic Control, 1995,40(5):802-819
    [16] Yang CG, Li ZJ, Cui RX, et al. Neural network-based motion control of underactuated wheeled inverted pendulum models. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(11):2004-2016
    [17] Huang J, Ri MH, Wu DR. Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum. IEEE Transactions on Fuzzy Systems, 2018,26(4):2030-2038
    [18] Yue M, An C, Da Y, et al. Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets & Systems, 2016,290:158-177
    [19] Yue M, Wang S, Sun JZ. Simultaneous balancing and trajectory tracking control for two-wheeled inverted pendulum vehicles: A composite control approach. Neurocomputing, 2016,191:44-54
    [20] Wen CY, Huang JS, Wang W, et al. Adaptive output feedback tracking control of a nonholonomic mobile robot. Automatica, 2014,50(3):821-831
    [21] 彭海军, 李飞, 高强 等. 多体系统轨迹跟踪的瞬时最优控制保辛方法. 力学学报, 2016,48(4):784-791
    [21] ( Peng Haijun, Li Hui, Gao Qiang, et al. Symplectic method for instantaneous optimal control of multibody system trajectory tracking. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):784-791 (in Chinese))
    [22] Zhou YS, Wang ZH. Motion controller design of wheeled inverted pendulum with an input delay via optimal control theory. Journal of Optimization Theory and Applications, 2016,168(2):625-645
    [23] Kim Y, Kim SH, Kwak YK. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems, 2005,44(1):25-46
    [24] Kim S, Kwon SJ. Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot. International Journal of Control, Automation and Systems, 2015,13(4):926-933
    [25] Zhou YS, Wang ZH. Robust motion control of a two-wheeled inverted pendulum with an input delay based on optimal integral sliding mode manifold. Nonlinear Dynamics, 2016,85(3):2065-2074
    [26] Ning YG, Yue M, Yang L, et al. A trajectory planning and tracking control approach for obstacle avoidance of wheeled inverted pendulum vehicles. International Journal of Control, 2018: 1-11
    [27] Yue M, Hou XQ, Hou WB. Composite path tracking control for tractor-trailer vehicles via constrained model predictive control and direct adaptive fuzzy techniques. Journal of Dynamic Systems, 2017,139:111008-1
    [28] Hou XQ, Yue M, Zhao J, et al. An ESO-based integrated trajectory tracking control for tractor-trailer vehicles with various constraints and physical limitations. International Journal of Systems Science, 2018,49(15):3202-3215
    [29] Yue M, Hou XQ, Gao RJ. Trajectory tracking control for tractor-trailer vehicles: A coordinated control approach. Nonlinear Dynamics, 2018,91:1061-1074
    [30] Zhou YS, Wang ZH, Chung KW. Turning motion control design of a two-wheeled inverted pendulum using curvature tracking and optimal control. Journal ofOptimization Theory and Applications, 2019,181(2):634-652
  • 加载中
计量
  • 文章访问数:  1196
  • HTML全文浏览量:  256
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回