EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水工圆形隧洞围岩衬砌摩擦滑动接触的新解法

尹崇林 吕爱钟

尹崇林, 吕爱钟. 水工圆形隧洞围岩衬砌摩擦滑动接触的新解法[J]. 力学学报, 2020, 52(1): 247-257. doi: 10.6052/0459-1879-19-238
引用本文: 尹崇林, 吕爱钟. 水工圆形隧洞围岩衬砌摩擦滑动接触的新解法[J]. 力学学报, 2020, 52(1): 247-257. doi: 10.6052/0459-1879-19-238
Yin Chonglin, Lü Aizhong. A NEW SOLUTION FOR FRICTIONAL SLIP CONTACT BETWEEN SURROUNDING ROCK AND LINING IN A HYDRAULIC CIRCULAR TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 247-257. doi: 10.6052/0459-1879-19-238
Citation: Yin Chonglin, Lü Aizhong. A NEW SOLUTION FOR FRICTIONAL SLIP CONTACT BETWEEN SURROUNDING ROCK AND LINING IN A HYDRAULIC CIRCULAR TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 247-257. doi: 10.6052/0459-1879-19-238

水工圆形隧洞围岩衬砌摩擦滑动接触的新解法

doi: 10.6052/0459-1879-19-238
基金项目: 1) 国家自然科学基金资助项目(51974124)
详细信息
    通讯作者:

    尹崇林

  • 中图分类号: O343.3

A NEW SOLUTION FOR FRICTIONAL SLIP CONTACT BETWEEN SURROUNDING ROCK AND LINING IN A HYDRAULIC CIRCULAR TUNNEL

  • 摘要: 在实际工程中,围岩和衬砌接触时,它们之间并非完全光滑,也并非可以承受任意大的摩擦力.如果围岩与衬砌之间的剪应力大于所能承受的最大静摩擦力,接触面间将发生切向滑动,定义接触面上产生最小滑动量的状态为衬砌的真实工作状态,这种接触即为摩擦滑动接触.以库仑摩擦模型模拟围岩和衬砌之间的摩擦滑动接触,在考虑支护滞后效应的前提下,利用平面弹性复变函数方法列出了应力边界条件、应力连续条件以及位移连续条件的方程, 再结合最优化理论,建立了具有一般性的摩擦滑动接触解法.在利用混合罚函数法求解最优化问题的过程中,减少了设计变量的个数,极大地简化了优化模型,提升了优化过程的迭代速度以及优化结果的精度.以此为基础,获得了围岩和衬砌相互作用下圆形水工隧洞的应力解析解.该方法可以求解光滑接触和完全接触两种极限情况,具有一般性.同时,利用一种精确的计算方法得到了不同情况下满足完全接触条件摩擦系数的阈值,还分析了衬砌和围岩边界上切向应力的变化规律.

     

  • [1] 张顶立 . 隧道及地下工程的基本问题及其研究进展. 力学学报, 2017,49(1):3-21
    [1] ( Zhang Dingli . Essentialissues and their research progress in tunnel and underground engineering. Chinese Journal of Theoreticaland Applied Mechanics, 2017,49(1):3-21(in Chinese))
    [2] 张顶立, 孙振宇, 侯艳娟 . 隧道支护结构体系及其协同作用. 力学学报, 2019,51(2):577-593
    [2] ( Zhang Dingli, Sun Zhenyu, Hou Yanjuan . Tunnel support structure system and its synergistic effect. Chinese Journal ofTheoretical and Applied Mechanics, 2019,51(2):577-593(in Chinese))
    [3] Muskhelishvili NI . Some Basic Problems of the Mathematical Theory of Elasticity. Groningen:P. Noordhoff Ltd, 1953
    [4] 施高萍, 祝江鸿, 李保海 等. 矩形巷道孔边应力的弹性分析. 岩土力学, 2014,35(9):2587-2593
    [4] ( Shi Gaoping, Zhu Jianghong, Li Baohai , et al. Elastic analysis of hole-edge stress of rectangular roadway. Rock and Soil Mechanics, 2014,35(9):2587-2593 (in Chinese))
    [5] Exadaktylos G, Stavropoulou M . A closed-form elastic solution for stresses and displacements aroundtunnels. International Journal of Rock Mechanics and Mining Sciences, 2002,39(7):905-916
    [6] 何川, 齐春, 封坤 等 . 基于 D-P 准则的盾构隧道围岩与衬砌结构相互作用分析. 力学学报, 2017,49(1):31-40
    [6] ( He Chuan, Qi Chun, Feng Kun , et al. Theoretical analysis of interaction between surrounding rocks andlinging strcture of shield tunnel based on Drucker-Prager yield criteria. Chinese Journal of Theoreticaland Applied Mechanics, 2017,49(1):31-40 (in Chinese))
    [7] 吴顺川, 潘旦光, 高永涛 . 深埋圆形巷道围岩和衬砌相互作用解析解. 工程力学, 2011,28(3):136-142
    [7] ( WuShunchuan, Pan Danguang, Gao Yongtao . Analytic solution for rock-liner interaction of deep circular tunnel. Engineering Mechanics, 2011,28(3):136-142 (in Chinese))
    [8] Hasanpour R, Rostami J, ?z?elik Y . Impact of overcut on interaction between shield and groundin the tunneling with a double-shield TBM. Rock Mechanics & Rock Engineering, 2016,49(5):2015-2022
    [9] Ramoni M, Anagnostou G . The interaction between shield, ground and tunnel support in tbm tunnellingthrough squeezing ground. Rock Mechanics & Rock Engineering, 2011,44(1):37-61
    [10] Son M . Adhesion strength at the shotcrete--rock contact in rock tunneling. Rock Mechanics & Rock Engineering, 2013,46(5):1237-1246.
    [11] 于学馥, 郑颖人, 刘怀恒 等. 地下工程围岩稳定性分析. 北京: 煤炭工业出版社, 1983: 79-90
    [11] ( Yu Xuefu, Zheng Yingren, Liu Huaiheng , et al. Analysis on stability of ground of underground structure. Beijing: China CoalIndustry Publishing Housing, 1983: 79-90(in Chinese))
    [12] Wang MB, Li SC . A complex variable solution for stress and displacement field around a lined circulartunnel at great depth. International Journal for Numerical and Analytical Methods in Geomechanics, 2009,33(7):939-951
    [13] Lu AZ, Zhang LQ, Zhang N , Analytic stress solutions for a circular pressure tunnel at pressure andgreat depth including support delay. International Journal of Rock Mechanics & Mining Sciences, 2011,48(3):514-519
    [14] Lu AZ, Zhang N , Analytic stress solutions for a circular pressure tunnel at great depth includingsupport delay and pure slip boundary condition. Rock Engineering and Rock Mechanics: Structures in and onRock Masses Alejano, Perucho, Olalla & Jiménez (Eds)© 2014 Taylor & Francis Group,London, 978-1-138-00149-7
    [15] Lu AZ, Zhang N , Analytic solutions of stress and displacement for a non-circular tunnel at greatdepth including support delay. International Journal of Rock Mechanics & Mining Sciences, 2014,70(9):69-81
    [16] Lu AZ, Zhang N, Qin Y , Analytical solutions for the stress of a lined non-circular tunnel underfull-slip contact conditions. International Journal of Rock Mechanics & Mining Sciences, 2015,79:183-192
    [17] Bobet A . Lined circular tunnels in elastic transversely anisotropic rock at depth. RockMechanics & Rock Engineering, 2011,44(2):149-167
    [18] 王少杰, 吕爱钟, 张晓莉 . 正交各向异性岩体中非圆形水工隧洞的解析解. 岩土力学, 2018,39(12):149-159,168
    [18] ( Wang Shaojie, Lü Aizhong, Zhang Xiaoli . Analytical solution for the non-circular hydraulic tunnel buriedin the orthotropic rock mass. Rock and Soil Mechanics, 2018,39(12):149-159,168 (in Chinese))
    [19] Atkinson C, Eftaxiopoulos DA . Numerical and analytical solutions for the problem of hydraulicfracturing from a cased and cemented wellbore. International Journal of Solids and Structures, 2002,39(6):1621-1650
    [20] 高永涛, 吴庆良, 吕爱钟 . 一类非均布荷载作用下双层厚壁圆筒光滑接触时的应力解析解. 工程力学, 2013,30(10):93-99
    [20] ( Gao Yongtao, Wu Qingliang, Lü Aizhong . Stress analytic solution of a double-layeredthick-walled cylinder with smooth contact interface subjected to a type of non-uniform distributed pressures. Engineering Mechanics, 2013,30(10):93-99 (in Chinese))
    [21] 储昭飞, 刘保国, 刘开云 等. 非静水应力场中圆形隧道衬砌与围岩间两种接触的黏弹性解析. 岩土力学, 2017,38(11):142-151
    [21] ( Chu Zhaofei, Liu Baoguo, Liu Kaiyun , et al. Analytical viscoelastic solutions for linedcircular tunnels under two contact conditions in a non-hydrostatic stress field. Rock and SoilMechanics, 2017,38(11):142-151 (in Chinese))
    [22] 王东, 徐超杰, 万强 等. 连接结构接触界面非线性力学建模研究. 力学学报, 2018,50(1):44-57
    [22] ( Wang Dong , XuChaojie, Wan Qiang, et al. Nonlinear mechanics modeling for joint interface of assembled structure. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):44-57 (in Chinese))
    [23] Meschke G, Nini? J, Stascheit J , et al. Parallelized computational modeling of pile--soilinteractions in mechanized tunneling. Engineering Structures, 2013,47(1):35-44
    [24] Cavalieri FJ, Cardona A . An augmented Lagrangian technique combined with a mortar algorithm formodelling mechanical contact problems. International Journal for Numerical Methods in Engineering, 2013,93(4):420-442
    [25] Cavalieri FJ, Cardona A . Numerical solution of frictional contact problems based on a mortaralgorithm with an augmented Lagrangian technique. Multibody System Dynamics, 2015,35(4):1-23
    [26] 苏宗贤, 何川 . 盾构隧道管片衬砌内力分析的壳-弹簧-接触模型及其应用. 工程力学, 2007,24(10):131-136
    [26] ( Su Zongxian, He Chuan . Shell-spring-contact model for shield tunnel segmental lining analysis andits application. Engineering Mechanics, 2007,24(10):131-136 (in Chinese))
    [27] 杨钊, 潘晓明, 余俊 . 盾构输水隧洞复合衬砌计算模型. 中南大学学报(自然科学版), 2010,41(5):1945-1952
    [27] ( Yang Zhao, Pan Xiaoming, Yu Jun . Calculation model on double linings of water diversion shield tunnel. Journal of Central South University (Science and Technology), 2010,41(5):1945-1952 (in Chinese))
    [28] Lu AZ, Yin CL, Zhang N . Analytic stress solutions for a lined circular tunnel under frictional slipcontact conditions. European Journal of Mechanics-A/ Solids, 2019,75:10-20
    [29] Fletcher R . Practical Methods of Optimization, Volume 2. Constrained Optimization. New York:Chichelser, 1981
    [30] 万耀青 编. 最优化计算方法常用程序汇编. 北京: 工人出版社, 1983
    [30] ( Wan Yaoqing. Common Programs forOptimization Calculation. Beijing: Workers' Press, 1983 (in Chinese))
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览量:  101
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回