EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦与滚阻对被动行走器步态影响的研究

郑鹏 王琪 吕敬 郑旭东

郑鹏, 王琪, 吕敬, 郑旭东. 摩擦与滚阻对被动行走器步态影响的研究[J]. 力学学报, 2020, 52(1): 162-170. doi: 10.6052/0459-1879-19-216
引用本文: 郑鹏, 王琪, 吕敬, 郑旭东. 摩擦与滚阻对被动行走器步态影响的研究[J]. 力学学报, 2020, 52(1): 162-170. doi: 10.6052/0459-1879-19-216
Zheng Peng, Wang Qi, Lü Jing, Zheng Xudong. STUDY ON THE INFLUENCE OF FRICTION AND ROLLING RESISTANCE ON THE GAIT OF PASSIVE DYNAMIC WALKER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162-170. doi: 10.6052/0459-1879-19-216
Citation: Zheng Peng, Wang Qi, Lü Jing, Zheng Xudong. STUDY ON THE INFLUENCE OF FRICTION AND ROLLING RESISTANCE ON THE GAIT OF PASSIVE DYNAMIC WALKER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162-170. doi: 10.6052/0459-1879-19-216

摩擦与滚阻对被动行走器步态影响的研究

doi: 10.6052/0459-1879-19-216
基金项目: 1) 国家自然科学基金资助项目(11772021)
详细信息
    通讯作者:

    郑鹏

  • 中图分类号: O313.7

STUDY ON THE INFLUENCE OF FRICTION AND ROLLING RESISTANCE ON THE GAIT OF PASSIVE DYNAMIC WALKER

  • 摘要: 本文研究了圆弧足被动行走器支撑足与地面间的摩擦系数和滚阻系数对被动行走器步态的影响. 首先分别利用扩展的 赫兹接触力模型和LuGre摩擦模型描述了支撑足与地面接触点处的法向支撑力和切向摩擦力,并考虑了行走过程中支撑足 所受的滚动摩阻;其次利用第二类Lagrange方程推导出了该系统的动力学方程,并通过与已有成果的对比确定 了合适的LuGre摩擦模型参数;最后仿真分析了摩擦系数和滚阻系数对被动行走器步态的影响. 研究发现:摩擦系数的改变 虽然对被动行走器行走的平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较小,但摩擦系数的减小 会改变其行走步态类型,如发生倍周期分岔甚至混沌现象;然而,滚阻系数的改变会对行走器行走的 平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较大,尚未发现滚阻系数的改变会引起其行走步态的变化.

     

  • [1] McGeer. Passive dynamic walking. Int J of Robotics Research, 1990,9(9):62-82
    [2] Collins S, Ruina A, Tedrake R , et al. Efficient bipedal robots based on passive-dynamic walkers. Science, 2005,307(5712):1082-1085
    [3] Qi F, Bi L, Wang T , et al. The experimental study on the contact process of passive walking. Acta Mechanica Sinica, 2012,28(4):1163-1168
    [4] Liu N, Li J, Wang T . Passive walker that can walk down steps: simulations and experiments. Acta Mechanica Sinica, 2008,24(5):569-573
    [5] Collins SH, Wisse M, Ruina A . A three-dimensional passive-dynamic walking robot with two legs and knees. The International Journal of Robotics Research, 2001,20(7):607-615
    [6] Chevallereau C, Abba G, Aoustin Y , et al. RABBIT: A testbed for advanced control theory. IEEE Control Systems Magazine, 2003,23(5):57-79
    [7] Wisse M, Keliksdal G, Frankenhyyzen JV , et al. Passive-Based walking robot. Robotics & Automation Magazine IEEE, 2007,14(2):52-62
    [8] Ames AD . First steps toward underactuated human-inspired bipedal robotic walking. IEEE, 2012,2(31):1011-1017
    [9] 宋夙冕 . 双足机器人高效行走的自适应控制研究. [博士论文]. 杭州:浙江大学, 2018
    [9] ( Song Sumian . Adaptive walking control for under-actuated biped robots. [PhD Thesis]. Hangzhou: Zhejiang University, 2018 (in Chinese))
    [10] 葛一敏, 袁海辉, 甘春标 . 基于步态切换的欠驱动双足机器人控制方法. 力学学报, 2018,50(4):871-879
    [10] ( Ge Yimin, Yuan Haihui, Gan Chunbiao . Control method of an under-actuated biped robot based on gait transition. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):871-879 (in Chinese))
    [11] Goswami A, Thuilot B, Espiau B . A study of the passive gait of a compass-like biped robot. The International Journal of Robotics Research, 2016,17(12):1282-1301
    [12] Garcia M, Chatterjee A, Ruina A . Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dynamics & Stability of Systems, 2000,15(2):75-99
    [13] Asano F . Fully analytical solution to discrete behavior of hybrid zero dynamics in limit cycle walking with constraint on impact posture. Multibody System Dynamics, 2015,35(2):191-213
    [14] Asano F . Stability analysis of underactuated compass gait based on linearization of motion. Multibody System Dynamics, 2015,33(1):93-111
    [15] Garcia M, Chatterjee A, Ruina A , et al. The simplest walking model: stability, complexity, and scaling. Journal of Biomechanical Engineering, 1998,120(2):281
    [16] Gritli H, Belghith S . Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dynamics, 2016,83(4):1955-1973
    [17] Montazeri Moghadam S, Sadeghi Talarposhti M, Niaty A , et al. The simple chaotic model of passive dynamic walking. Nonlinear Dynamics, 2018,93(3):1183-1199
    [18] Gritli H, Belghith S . Walking dynamics of the passive compass-gait model under OGY-based control: Emergence of bifurcations and chaos. Communications in Nonlinear Science and Numerical Simulation, 2017,47(11):308-327
    [19] Gritli H, Belghith S . Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map. Chaos, Solitons & Fractals, 2017,98(3):72-87
    [20] Gritli H, Belghith S . Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark-Sacker bifurcation. Chaos, Solitons & Fractals, 2018,110(3):158-168
    [21] Gamus B, Or Y . Dynamic bipedal walking under stick-slip transitions. SIAM Journal on Applied Dynamical Systems, 2015,14(2):609-642
    [22] Zheng X, Wang Q . LCP method for a planar passive dynamic walker based on an event-driven scheme. Acta Mechanica Sinica, 2018,34(3):578-588
    [23] Qi F, Wang T, Li J . The elastic contact influences on passive walking gaits. Robotica, 2011,29(5):787-796
    [24] 段文杰, 王琪, 王天舒 . 圆弧足被动行走器非光滑动力学仿真研究. 力学学报, 2011,43(4):765-774
    [24] ( Duan Wenjie, Wang Qi, Wang Tianshu . Simulation research of a passive dynamic walker with round feet based on non-smooth method. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(4):765-774 (in Chinese))
    [25] 富立, 胡鸿奎, 富腾 . 多体系统接触碰撞问题的牛顿-欧拉线性互补方法. 力学学报, 2017,49(5):1115-1125
    [25] ( Fu Li, Hu Hongkui, Fu Teng . Contact-impact analysis in multi-body systems based on newton euler LCP approach. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1115-1125 (in Chinese))
    [26] Fan X, Walker PD, Wang Q . Modeling and simulation of longitudinal dynamics coupled with clutch engagement dynamics for ground vehicles. Multibody System Dynamics, 2018,43(2):153-174
    [27] 张润森, 王琪 . 浮放物体平面多刚体动力学建模与算法研究. 力学学报, 2017,49(6):1370-1379
    [27] ( Zhang Runsen, Wang Qi . Research on modeling and numerical method of free standing body on planar rigid multibody dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1370-1379 (in Chinese))
    [28] 王晓军, 王琪 . 含摩擦与碰撞平面多刚体系统动力学线性互补算法. 力学学报, 2015,47(5):814-821
    [28] ( Wang Xiaojun, Wang Qi . A LCP method for the dynamics of planar multibody systems with impact and friction. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(5):814-821 (in Chinese))
    [29] Skrinjar L, Slavi? J, Bolte?ar M . A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 2018,145(9):171-187
    [30] Johanastrom K, Canudas-De-Wit C . Revisiting the LuGre friction model. IEEE Control Systems Magazine, 2008,28(6):101-114
  • 加载中
计量
  • 文章访问数:  1270
  • HTML全文浏览量:  222
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-09
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回