[1] | Nakamura T, Takenaka H, Okamoto T , et al. FDM Simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of Seismological Society of America, 2012,102(6):2420-2435 | [2] | Okamoto T, Takenaka H . A reflection/transmission matrix formulation for seismoacoustic scattering by an irregular fluid-solid interface. Geophysical Journal International, 1999,139:531-546 | [3] | Qian ZH, Yamanaka H . An efficient approach for simulating seismoacoustic scattering due to an irregular fluid-solid interface in multilayered media. Geophysical Journal International, 2012,189:524-540 | [4] | Komatitsch D, Barnes C, Tromp J . Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics, 2000,65(2):623-631 | [5] | Collins MD, Siegmann WL . Treatment of variable topography with the seismoacoustic parabolic equation. IEEE Journal of Ocean Engineering, 2017,42(2):488-493 | [6] | Tang J, Piao SC, Zhang HG . Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation. Chinese Physics B, 2017,26(11):114301 | [7] | Murphy JE, Chin-Bing SA . A finite-element model for ocean acoustic propagation and scattering. The Journal of Acoustic Society of America, 1989,86:1478-1483 | [8] | Zhao HY, Jeng DS, Liao CC , et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering, 2017,128:1-21 | [9] | Lin ZB, Guo YK, Jeng DS , et al. An integrated numerical model for wave-soil-pipeline interactions. Coastal Engineering, 2016,108:25-35 | [10] | Ye JH . Seismic response of poroelastic seabed and composite breakwater under strong earthquake loading. Bulletin of Earthquake Engineering, 2012,10:1609-1633 | [11] | 李伟华 . 考虑水--饱和土场地--结构耦合时的沉管隧道地震反应分析. 防灾减灾工程学报, 2010,30(6):607-613 | [11] | ( Li Weihua . Seismic response analysis of immersed tube tunnels considering water saturated soil site structure coupling. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(6):607-613(in Chinese)) | [12] | Farhat C, Lesoinne M , LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 1998,157(1):95-114 | [13] | Farhat C, Lesoinne M . Two effcient staggered algorithms for serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics & Engineering, 2000,182:499-515 | [14] | Farhat C, Zee KGVD, Geuzaine P . Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 2006,195(17):1973-2001 | [15] | Bathe KJ, Zhang H . Finite element developments for general fluid flows with structural interactions. International Journal for Numerical Methods in Engineering, 2010,60(1):213-232 | [16] | Degroote J, Haelterman R, Annerel S , et al. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures, 2010,88(7):446-457 | [17] | Hou G, Wang J, Layton A . Numerical methods for fluid-structure interaction ---A review. Communications in Computational Physics, 2012,12(2):337-377 | [18] | Habchi C, Russeil S, Bougeard D , et al. Partitioned solver for strongly coupled fluid--structure interaction. Computers & Fluids, 2013,71(1):306-319 | [19] | Mehl M, Uekermann B, Bijl H , et al. Parallel coupling numerics for partitioned fluid--structure interaction simulations. Computers & Mathematics with Applications, 2016,71(4):869-891 | [20] | Bungartz HJ, Lindner F, Gatzhammer B , et al. Precice--A fully parallel library for multi-physics surface coupling. Computers & Fluids, 2016,141:250-258 | [21] | Link G, Kaltenbacher M, Breuer M , et al. A 2D finite-element scheme for fluid--solid--acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics & Engineering, 2009,198(41):3321-3334 | [22] | 陈少林, 柯小飞, 张洪翔 . 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):1-13 | [22] | ( Chen Shaolin, Ke Xiaofei, Zhang Hongxiang . A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):1-13(in Chinese)) | [23] | 廖振鹏 . 工程波动理论导论. 第2版. 北京: 科学出版社, 2002: 136-285 | [23] | ( Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering(2nd edition). Beijing: Science Press, 2002: 136-285(in Chinese)) | [24] | Liao ZP, Wong HL . A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn Earthq Eng, 1984,3:174-183 | [25] | 邢浩洁, 李鸿晶 . 透射边界条件在波动谱元模拟中的实现:二维波动. 力学学报, 2017,49(4):894-906 | [25] | ( Xing Haojie, Li Hongjing . Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese)) | [26] | 谷音, 刘晶波, 杜修力 . 三维一致粘弹性人工边界及等效粘弹性边界单元. 工程力学, 2007,24(12):31-37 | [26] | ( Gu Lin, Liu Jingbo, Du Xiuli . Three-dimensional uniform viscoelastic artificial boundary and equivalent viscoelastic boundary element. Journal of Engineering Mechanics, 2007,24(12):31-37(in Chinese)) | [27] | 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427 | [27] | ( Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong . Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese)) | [28] | 赵宇昕, 陈少林 . 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016,48(5):1145-1158 | [28] | ( Zhao Yuxin, Chen Shaolin . Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1145-1158 (in Chinese)) | [29] | 刘晶波, 谭辉, 宝鑫 等. 土--结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43 | [29] | ( Liu Jingbo, Tan Hui, Bao Xin , et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese)) | [30] | 陈少林, 廖振鹏, 陈进 . 两相介质近场波动模拟的解耦方法, 地球物理学报, 2005,48(4):909-917 | [30] | ( Chen Shaolin, Liao Zhenpeng, Chen Jin . Decoupling method for near-field wave simulation of two-phase media. Journal of Geophysics, 2005,48(4):909-917 (in Chinese)) | [31] | Deresiewicz H, Rice JT . The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bull Seis Soc Am, 1964,54(1):409-416 | [32] | Deresiewicz H . The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull Seis Soc Am, 1964,54(1):425-430 | [33] | Biot MA . Theory of propagation of elastic waves in a fluid-saturated porous solid. Acoust Soc Am, 1956,28:168-191 | [34] | Biot MA . Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4):1482-1498 | [35] | 柯小飞, 陈少林, 张洪翔 . P-SV波入射时海水--层状海床体系的自由场分析 .振动工程学报, 2018, 录用 | [35] | ( Ke Xiaofei, Chen Shaolin , Zhang Hongxiang. Freefield analysis of seawater-layered seabed system at P-SV wave incident. Journal of Vibration Engineering, 2018, accepted (in Chinese)) |
|