EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋地震工程流固耦合问题统一计算框架------不规则界面情形

陈少林 程书林 柯小飞

陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题统一计算框架------不规则界面情形[J]. 力学学报, 2019, 51(5): 1517-1529. doi: 10.6052/0459-1879-19-156
引用本文: 陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题统一计算框架------不规则界面情形[J]. 力学学报, 2019, 51(5): 1517-1529. doi: 10.6052/0459-1879-19-156
Chen Shaolin, Cheng Shulin, Ke Xiaofei. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. doi: 10.6052/0459-1879-19-156
Citation: Chen Shaolin, Cheng Shulin, Ke Xiaofei. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. doi: 10.6052/0459-1879-19-156

海洋地震工程流固耦合问题统一计算框架------不规则界面情形

doi: 10.6052/0459-1879-19-156
基金项目: 1) 国家自然科学基金资助项目(51278260)
详细信息
    通讯作者:

    陈少林

  • 中图分类号: TU435

A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING: IRREGULAR INTERFACE CASE

  • 摘要: 海底地震动场及海洋声场的模拟中,需要考虑复杂海床介质及海底地形的影响,涉及到海水、饱和海床、弹性基岩之间的相互耦合.传统的方法分别采用声波方程描述理想流体、Biot方程描述饱和海床、弹性波方程描述基岩,分别进行空间离散和界面耦合, 十分不便.本文基于理想流体、固体分别为饱和多孔介质的特殊情形(孔隙率分别为1和0),由饱和多孔介质的Biot方程可退化得到理想流体的声波方程和固体的弹性波方程.然后, 以饱和多孔介质方程为基础, 经集中质量有限元离散,严格考虑不同孔隙率的饱和多孔介质在不规则界面的耦合条件,通过求解法向和切向界面力的途径,建立了不同孔隙率的饱和多孔介质耦合情形的求解方法,将流体、固体、饱和多孔介质间的耦合问题纳入到统一计算框架,并编制了相应的三维并行分析程序.考虑海水--弹性基岩、海水--饱和海床--弹性基岩体系中凹陷地形情形,采用本文提出的统一计算框架, 结合透射边界条件,分析了P波入射时的动力反应, 并通过结果是否满足界面条件,验证了该统一计算框架的有效性以及并行计算的可行性.

     

  • [1] Nakamura T, Takenaka H, Okamoto T , et al. FDM Simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of Seismological Society of America, 2012,102(6):2420-2435
    [2] Okamoto T, Takenaka H . A reflection/transmission matrix formulation for seismoacoustic scattering by an irregular fluid-solid interface. Geophysical Journal International, 1999,139:531-546
    [3] Qian ZH, Yamanaka H . An efficient approach for simulating seismoacoustic scattering due to an irregular fluid-solid interface in multilayered media. Geophysical Journal International, 2012,189:524-540
    [4] Komatitsch D, Barnes C, Tromp J . Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics, 2000,65(2):623-631
    [5] Collins MD, Siegmann WL . Treatment of variable topography with the seismoacoustic parabolic equation. IEEE Journal of Ocean Engineering, 2017,42(2):488-493
    [6] Tang J, Piao SC, Zhang HG . Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation. Chinese Physics B, 2017,26(11):114301
    [7] Murphy JE, Chin-Bing SA . A finite-element model for ocean acoustic propagation and scattering. The Journal of Acoustic Society of America, 1989,86:1478-1483
    [8] Zhao HY, Jeng DS, Liao CC , et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering, 2017,128:1-21
    [9] Lin ZB, Guo YK, Jeng DS , et al. An integrated numerical model for wave-soil-pipeline interactions. Coastal Engineering, 2016,108:25-35
    [10] Ye JH . Seismic response of poroelastic seabed and composite breakwater under strong earthquake loading. Bulletin of Earthquake Engineering, 2012,10:1609-1633
    [11] 李伟华 . 考虑水--饱和土场地--结构耦合时的沉管隧道地震反应分析. 防灾减灾工程学报, 2010,30(6):607-613
    [11] ( Li Weihua . Seismic response analysis of immersed tube tunnels considering water saturated soil site structure coupling. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(6):607-613(in Chinese))
    [12] Farhat C, Lesoinne M , LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 1998,157(1):95-114
    [13] Farhat C, Lesoinne M . Two effcient staggered algorithms for serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics & Engineering, 2000,182:499-515
    [14] Farhat C, Zee KGVD, Geuzaine P . Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 2006,195(17):1973-2001
    [15] Bathe KJ, Zhang H . Finite element developments for general fluid flows with structural interactions. International Journal for Numerical Methods in Engineering, 2010,60(1):213-232
    [16] Degroote J, Haelterman R, Annerel S , et al. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures, 2010,88(7):446-457
    [17] Hou G, Wang J, Layton A . Numerical methods for fluid-structure interaction ---A review. Communications in Computational Physics, 2012,12(2):337-377
    [18] Habchi C, Russeil S, Bougeard D , et al. Partitioned solver for strongly coupled fluid--structure interaction. Computers & Fluids, 2013,71(1):306-319
    [19] Mehl M, Uekermann B, Bijl H , et al. Parallel coupling numerics for partitioned fluid--structure interaction simulations. Computers & Mathematics with Applications, 2016,71(4):869-891
    [20] Bungartz HJ, Lindner F, Gatzhammer B , et al. Precice--A fully parallel library for multi-physics surface coupling. Computers & Fluids, 2016,141:250-258
    [21] Link G, Kaltenbacher M, Breuer M , et al. A 2D finite-element scheme for fluid--solid--acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics & Engineering, 2009,198(41):3321-3334
    [22] 陈少林, 柯小飞, 张洪翔 . 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):1-13
    [22] ( Chen Shaolin, Ke Xiaofei, Zhang Hongxiang . A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):1-13(in Chinese))
    [23] 廖振鹏 . 工程波动理论导论. 第2版. 北京: 科学出版社, 2002: 136-285
    [23] ( Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering(2nd edition). Beijing: Science Press, 2002: 136-285(in Chinese))
    [24] Liao ZP, Wong HL . A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn Earthq Eng, 1984,3:174-183
    [25] 邢浩洁, 李鸿晶 . 透射边界条件在波动谱元模拟中的实现:二维波动. 力学学报, 2017,49(4):894-906
    [25] ( Xing Haojie, Li Hongjing . Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese))
    [26] 谷音, 刘晶波, 杜修力 . 三维一致粘弹性人工边界及等效粘弹性边界单元. 工程力学, 2007,24(12):31-37
    [26] ( Gu Lin, Liu Jingbo, Du Xiuli . Three-dimensional uniform viscoelastic artificial boundary and equivalent viscoelastic boundary element. Journal of Engineering Mechanics, 2007,24(12):31-37(in Chinese))
    [27] 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427
    [27] ( Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong . Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese))
    [28] 赵宇昕, 陈少林 . 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016,48(5):1145-1158
    [28] ( Zhao Yuxin, Chen Shaolin . Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1145-1158 (in Chinese))
    [29] 刘晶波, 谭辉, 宝鑫 等. 土--结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43
    [29] ( Liu Jingbo, Tan Hui, Bao Xin , et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese))
    [30] 陈少林, 廖振鹏, 陈进 . 两相介质近场波动模拟的解耦方法, 地球物理学报, 2005,48(4):909-917
    [30] ( Chen Shaolin, Liao Zhenpeng, Chen Jin . Decoupling method for near-field wave simulation of two-phase media. Journal of Geophysics, 2005,48(4):909-917 (in Chinese))
    [31] Deresiewicz H, Rice JT . The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bull Seis Soc Am, 1964,54(1):409-416
    [32] Deresiewicz H . The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull Seis Soc Am, 1964,54(1):425-430
    [33] Biot MA . Theory of propagation of elastic waves in a fluid-saturated porous solid. Acoust Soc Am, 1956,28:168-191
    [34] Biot MA . Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4):1482-1498
    [35] 柯小飞, 陈少林, 张洪翔 . P-SV波入射时海水--层状海床体系的自由场分析 .振动工程学报, 2018, 录用
    [35] ( Ke Xiaofei, Chen Shaolin , Zhang Hongxiang. Freefield analysis of seawater-layered seabed system at P-SV wave incident. Journal of Vibration Engineering, 2018, accepted (in Chinese))
  • 加载中
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  131
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回