EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

试样疲劳性能尺度效应的概率控制体积方法

李亚波 宋清源 杨凯 陈一萍 孙成奇 洪友士

李亚波, 宋清源, 杨凯, 陈一萍, 孙成奇, 洪友士. 试样疲劳性能尺度效应的概率控制体积方法[J]. 力学学报, 2019, 51(5): 1363-1371. doi: 10.6052/0459-1879-19-118
引用本文: 李亚波, 宋清源, 杨凯, 陈一萍, 孙成奇, 洪友士. 试样疲劳性能尺度效应的概率控制体积方法[J]. 力学学报, 2019, 51(5): 1363-1371. doi: 10.6052/0459-1879-19-118
Li Yabo, Song Qingyuan, Yang kai, Chen Yiping, Sun Chengqi, Hong Youshi. PROBABILISTIC CONTROL VOLUME METHOD FOR THE SIZE EFFECT OF SPECIMEN FATIGUE PERFORMANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1363-1371. doi: 10.6052/0459-1879-19-118
Citation: Li Yabo, Song Qingyuan, Yang kai, Chen Yiping, Sun Chengqi, Hong Youshi. PROBABILISTIC CONTROL VOLUME METHOD FOR THE SIZE EFFECT OF SPECIMEN FATIGUE PERFORMANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1363-1371. doi: 10.6052/0459-1879-19-118

试样疲劳性能尺度效应的概率控制体积方法

doi: 10.6052/0459-1879-19-118
基金项目: 1) 国家自然科学基金;中国科学院战略性先导科技专项(XDB22020200);中国铁路总公司科技研究开发计划课题资助项目(P2018J003)
详细信息
    通讯作者:

    孙成奇

  • 中图分类号: TG113.2

PROBABILISTIC CONTROL VOLUME METHOD FOR THE SIZE EFFECT OF SPECIMEN FATIGUE PERFORMANCE

  • 摘要: 试样尺度、缺口和加载方式通常对材料的疲劳性能具有重要影响. 因此,发展关联试样尺度、缺口和加载方式对疲劳强度影响的方法对于从材料疲劳性能到结构件疲劳性能的预测具有重要意义.首先,采用旋转弯曲加载和轴向加载方式对不同几何形状EA4T车轴钢试样进行了疲劳实验.实验结果表明, 由于试样尺度的增加,轴向加载下狗骨形试样的疲劳强度明显低于沙漏形试样; 相同寿命下,缺口显著降低试样的疲劳强度. 疲劳断口扫描电镜观测结果表明,疲劳裂纹均起源于试样表面.沙漏形试样和狗骨形试样疲劳断口大多只有一个裂纹源,而缺口试样疲劳断口均具有多裂纹源特征. 然后,采用概率控制体积方法研究了试样尺度、缺口和加载方式对疲劳强度的影响,并与临界距离和应变能密度方法进行了比较. 结果表明,概率控制体积方法能够更好地关联试样尺度、缺口和加载方式对EA4T车轴钢疲劳强度的影响.最后, 提出一种基于控制体积的结构件疲劳强度预测方法,并用于具有不连续高应力区域车轴钢试样的疲劳强度预测,预测结果与实验结果 吻合.

     

  • [1] 高江平, 杨华, 蒋宇飞 等. 三剪应力统一强度理论研究. 力学学报, 2017,49(6):1322-1334
    [1] ( Gao Jiangping, Yang Hua, Jiang Yufei , et al. Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1322-1334 (in Chinese))
    [2] 万征, 宋琛琛, 赵晓光 . 一种横观各向同性强度准则及变换应力空间. 力学学报, 2018,50(5):1168-1184
    [2] ( Wan Zheng, Song Chenchen, Zhao Xiaoguang . One kind of transverse isotropic strength criterion and the transformation stress space. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1168-1184 (in Chinese))
    [3] Xu W, Yang X, Zhong B , et al. Failure criterion of titanium alloy irregular sheet specimens for vibration-based bending fatigue testing. Engineering Fracture Mechanics, 2018,195:44-56
    [4] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [4] ( Wen Longfei, Wang Lixiang, Tian Rong . Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [5] Furuya Y . Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing. Scripta Materialia, 2008,58:1014-1017
    [6] Shirani M, H?rkeg?rd G . Fatigue life distribution and size effect in ductile cast iron for wind turbine components. Engineering Failure Analysis, 2011,18:12-24
    [7] Beretta S, Regazzi D . Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations. International Journal of Fatigue, 2016,86:13-23
    [8] Chen S, Li Y, Liu Y , et al. Fatigue strengths of the 54SiCr6 steel under different cyclic loading conditions. Acta Metallurgica Sinica, 2009,45:428-433
    [9] Nakajima M, Tokaji K, Itoga H , et al. Effect of loading condition on very high cycle fatigue behavior in a high strength steel. International Journal of Fatigue, 2010,32:475-480
    [10] Hu Y, Sun C, Xie J , et al. Effects of loading frequency and loading type on high-cycle and very-high-cycle fatigue of a high-strength steel. Materials, 2018,11:1456
    [11] Lanning DB, Nicholas T, Haritos GK . On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti--6Al--4V. International Journal of Fatigue, 2005,27:45-57
    [12] Akiniwa Y, Miyamoto N, Tsuru H , et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime. International Journal of Fatigue, 2006,28:1555-1565
    [13] Sun C, Zhang X, Liu X , et al. Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes. Fatigue & Fracture of Engineering Materials & Structures, 2016,39:770-779
    [14] Wang R, Li D, Hu D , et al. A combined critical distance and highly-stressed-volume model to evaluate the statistical size effect of the stress concentrator on low cycle fatigue of TA19 plate. International Journal of Fatigue, 2017,95:8-17
    [15] Leitner M, Vormwald M, Remes H . Statistical size effect on multiaxial fatigue strength of notched steel components. International Journal of Fatigue, 2017,104:322-333
    [16] Sun C, Song Q . A method for evaluating the effects of specimen geometry and loading condition on fatigue life of metallic materials. Materials Research Express, 2019,6:046536
    [17] Neuber H . Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural Form and Material. 2nd Ed. Berlin: Springer Verlag, 1958
    [18] Peterson RE . Notch sensitivity Sines G, Waisman JL,eds. Metal Fatigue. New York: McGraw Hill, 1959: 293-306
    [19] Kuguel RA . A relation between theoretical stress concentration factor and fatigue notch factor deduced from the concept of highly stressed volume. ASTM Proc., 1961,61:732-748
    [20] Murakami Y, Yokoyama NN, Nagata J . Mechanism of fatigue failure in ultralong life regime. Fatigue & Fracture of Engineering Materials & Structures, 2002,25:735-746
    [21] Lanning DB, Nicholas T, Palazotto A . HCF notch predictions based on weakest-link failure models. International Journal of Fatigue, 2003,25:835-841
    [22] Naik RA, Lanning DB, Nicholas T , et al. A critical plane gradient approach for the prediction of notched HCF life. International Journal of Fatigue, 2005,27:481-492
    [23] erto F, Campagnolo A, Lazzarin P . Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 2015,38:503-517
    [24] H?rkeg?rd G, Halleraker G . Assessment of methods for prediction of notch and size effects at the fatigue limit based on test data by B?hm and Magin. International Journal of Fatigue, 2010,32:1701-1709
    [25] Sun C, Song Q . A method for predicting the effects of specimen geometry and loading condition on fatigue strength. Metals, 2018,8:811
    [26] Taylor D . Geometrical effects in fatigue: a unifying theoretical model. International Journal of Fatigue, 1999,21:413-420
    [27] Susmel L . The theory of critical distances: A review of its applications in fatigue. Engineering Fracture Mechanics, 2008,75:1706-1724
    [28] Varfolomeev I, Luke M, Burdack M . Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T. Engineering Fracture Mechanics, 2011,78:742-753
    [29] Berto F, Lazzarin P . A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theoretical and Applied Fracture Mechanics, 2009,52:183-194
    [30] Gallo P, Berto F, Lazzarin P . High temperature fatigue tests of notched specimens made of titanium Grade 2. Theoretical and Applied Fracture Mechanics, 2015,76:27-34
    [31] Wang J, Yang X . HCF strength estimation of notched Ti--6Al--4V specimens considering the critical distance size effect. International Journal of Fatigue, 2012,40:97-104
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  193
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回