EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种适用于岩土的扩展强度及屈服准则

万征 孟达 宋琛琛

万征, 孟达, 宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报, 2019, 51(5): 1545-1556. doi: 10.6052/0459-1879-19-074
引用本文: 万征, 孟达, 宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报, 2019, 51(5): 1545-1556. doi: 10.6052/0459-1879-19-074
Wan Zheng, Meng Da, Song Chenchen. AN EXTENDED STRENGTH AND YIELD CRITERION FOR GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. doi: 10.6052/0459-1879-19-074
Citation: Wan Zheng, Meng Da, Song Chenchen. AN EXTENDED STRENGTH AND YIELD CRITERION FOR GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. doi: 10.6052/0459-1879-19-074

一种适用于岩土的扩展强度及屈服准则

doi: 10.6052/0459-1879-19-074
基金项目: 1)国家自然科学青年基金资助项目(11402260)
详细信息
    通讯作者:

    万征

  • 中图分类号: TU43

AN EXTENDED STRENGTH AND YIELD CRITERION FOR GEOMATERIALS

  • 摘要: 土壤材料是一种典型的摩擦型材料,然而天然岩石却具有一定的凝聚力,而金属材料则完全是凝聚型材料. 在分析三种典型的材料强度准则表达式基础上,即SMP,Lade-Duncan以及广义Von-Mises准则,通过利用应力张量的不变量表达形式,提出了一种扩展准则即VML准则,该准则能够分别退化为上述3种典型准则. 在偏平面上,新准则能够描述从曲边三角形到圆形在内的多种开口形态;在子午面上,采用幂函数作为破坏准则公式,能够描述静水压力对于强度特性影响的非线性性质. 而对于土壤的屈服性质,岩土材料具有典型的压剪耦合特性,因此,为了描述剪切与等方向压缩两种路径下的体积耦合现象,采用水滴型屈服面作为屈服准则. 对于偏平面上的截面形状,讨论了给定球应力下偏应力强度值的分布形式及特点,讨论了应力罗德角对于偏平面上强度曲线的凹凸性的影响. 最后,通过多种材料的破坏与屈服试验成果,用所提新准则进行了验证. 通过强度以及屈服特性测试对比,验证了所提VML准则的合理性.

     

  • [1] Matsuoka H, Nakai T . Relationship arnong Tresca, Mises, Mohr Coulomb and Matsuoka-Naka failure criteria. Soil sand Foundatiens, 1985,25(4):123-128
    [2] Matsuoka H, Yao YP, Sun DA . The Cam-clay models revised by the SMP criterion. Soils and Foundations, 1999,39(1):81-95
    [3] Balasubrarnaniam AS, Chaudhry AR . Deformation and strength characteristics of soft Bangkok clay. Journal of Geotechnical Engineering Division, ASCE, 1978 , 104(9):1153-1167
    [4] Lade PV, Musante HM . Three-dimensional behavior of remolded clay. Journal of Geotechnical and Geoenvironmental Engineering, Division, ASCE, 1978,104(2):193-209
    [5] Matsuoka H . On the significance of the spatial mobilized plane. Soil and Foundations, 1976,16(1):91-100
    [6] 俞茂宏, 何丽南, 宋凌宇 . 广义双剪应力强度理论及其推广. 中国科学A 辑, 1985,28(12):1113-1121
    [6] ( Yu Maohong, He Linan, Song Lingyu . Twin shear stress theory and its generalization. Science in China, Series A, 1985,28(11):1174-1183 (in Chinese))
    [7] 俞茂宏 . 岩土类材料的统一强度理论及其应用. 岩土工程学报, 1994,16(2):1-10
    [7] ( Yu Maohong . Unified strength theory for geomaterials and its applications. Chinese Journal of Geotechnical Engineering, 1994,16(2):1-10 (in Chinese))
    [8] 俞茂宏 . 线性和非线性的统一强度理论. 岩石力学与工程学报, 2007,26(4):662-669
    [8] ( Yu Maohong . Linear and nonlinear unified strength theory. Chinese Journal of Rock Mechanics and Engineering, 2007,26(4):662-669 (in Chinese))
    [9] 昝月稳, 俞茂宏 . 岩石广义非线性统一强度理论. 西安交通大学学报, 2013,48(4):616-624
    [9] ( Zan Yuewen, Yu Maohong . Generalized nonlinear unified strength theory of rock. Journal of Southwest Jiaotong University, 2013,48(4):616-624 (in Chinese))
    [10] 高江平, 姜华, 蒋宇飞 等. 三剪应力统一强度理论研究. 力学学报, 2017,49(6):1322-1334
    [10] ( Gao Jiangping, Jiang Hua, Jiang Yufei , et al. Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1322-1334 (in Chinese))
    [11] 姚仰平, 路德春, 周安楠 等. 广义非线性强度理论及其变换应力空间. 中国科学:E辑, 2004,34(11):1283-1299
    [11] ( Yao Yangping, Lu Dechun, Zhou Annan , et al. Generalized non-linear strength theory and transformed stress space. Science in China:Ser. E, 2004,34(11):1283-1299 (in Chinese))
    [12] 路德春, 江强, 姚仰平 . 广义非线性强度理论在岩石材料中的应用. 力学学报, 2005,37(6):729-736
    [12] ( Lu Dechun, Jiang Qiang, Yao Yangping . Applications of generalized non-linear strength theory to rock materials. Chinese Journal Of Theoretical And Applied Mechanics, 2005,37(6):729-736 (in Chinese))
    [13] Yao YP, Zhou A , Lu D. Extended transformed stress space for geomaterials and its application. Journal of Engineering Mechanics,ASCE,2007,13310): 1115-1123
    [14] 姚仰平, 路德春, 周安楠 . 岩土材料的变换应力空间及其应用. 岩土工程学报, 2005,29(1):24-29
    [14] ( Yao Yangping, Lu Dechun, Zhou Annan . Transformed stress space for geomaterials and its application. Chinese Journal of Geotechnical Engineering, 2005,29(1):24-29 (in Chinese))
    [15] 杜修力, 王国盛, 路德春 . 混凝土材料非线性多轴动态强度准则. 中国科学:E辑, 2014,44(12):1319-1332
    [15] ( Du Xiuli, Wang Guosheng, Lu Dechun . Nonlinear multiaxial dynamic strength criterion for concrete material. Science in China:Ser. E, 2014,44(12):1319-1332 (in Chinese))
    [16] 姜华 . 一种简便的岩石三维Hoek-Brown强度准则. 岩石力学与工程学报, 2015,34(s1):2996-3004
    [16] ( Jiang Hua . A simple convenient three-dimnesional Hoek-Brown criterion for rocks. Chinese Journal of Rock Mechanics and Engineering, 2015,34(s1):2996-3004 (in Chinese))
    [17] Hsieh SS, Ting EC, Chen WF . A plastic-fracture model for concrete. International Journal of Solids and Structures, 1982,18(3):181-197
    [18] Winnicki A, Cichon C . Plastic model for concrete in plane stress state. II: Numerical validation. Journal of Engineering Mechanics, 1998,124(6):603-613
    [19] Zienkiewicz OC, Pande GN . Some useful forms of isotropic yieldsurface for soil and rock mechanics//Pande GW. Finite Elements in Geomechnaics. London: Wiley, 1977: 179-190
    [20] 郑颖人, 孔亮 . 塑性力学中的分量理论------广义塑性力学. 岩土工程学报, 2000,22(3):269-274
    [20] ( Zheng Yingren, Kong Liang . Componental plastic mechanics---Generalized plastic mechanics. Chinese Journal of Geotechnical Engineering, 2000,22(3):269-274 (in Chinese))
    [21] 刘洋 . 砂土的各向异性强度准则:原生各向异性. 岩土工程学报, 2013,35(8):1526-1534
    [21] ( Liu Yang . Anisotropic strength criteria of sand: inherent anisotropy. Chinese Journal of Geotechnical Engineering, 2013,35(8):1526-1534 (in Chinese))
    [22] 曹威, 王睿, 张建民 . 横观各向同性砂土的强度准则. 岩土工程学报, 2016,38(11):2026-2032
    [22] ( Cao Wei, Wang Rui, Zhang Jianmin . New strength criterion for sand with cross-anisotropy. Chinese Journal of Rock Mechanics and Engineering, 2016,38(11):2026-2032 (in Chinese))
    [23] 路德春, 梁靖宇, 王国盛 等. 横观各向同性土的三维强度准则. 岩土工程学报, 2018,40(1):54-63
    [23] ( Lu Dechun, Liang Jingyu, Wang Guosheng , et al. Three-dimensional strength criterion for transverse isotropic geomaterials. Chinese Journal of Geotechnical Engineering, 2018,40(1):54-63 (in Chinese))
    [24] Abelev A, Lade PV . Characterization of failure in cross-anisotropic soils. J. Eng. Mech. ASCE, 2004,130(5):599-606
    [25] Kirkgard MM, Lade PV . Anisotropic three-dimensional behavior of a normally consolidated Clay. Can. Geotech. J, 1993,30(4):848-858
    [26] Lu DC, Liang JY, Du XL , et al. A novel transversely isotropic strength criterion for soils based on a mobilised plane approach. Géotechnique, 2018. 69(3):234-250
    [27] Liu MD, Carter JP . Virgin compression of structured soils. Géotechnique, 1999,49(1):43-57
    [28] Mahdi T, Yannis FD, Ralf P . A destructuration theory and its application to SANICLAY model. International Journal for Numerical and Analytical Methods in Geomechanics, 2010,24:723-735
    [29] Asaoka A, Noda T, Yamada E , et al. An elstoplastic description of two distinct volume change mechanisms of soils. Soils and Foundations, 2000,42(5):47-57
    [30] Sun D, Matsuoka H, Yao YP , et al. An elasto-plastic model for unsaturated soil in three-dimensional stresses. Soils and Foundations, 2000,40(3):17-28
    [31] Zhou AN, Sheng DC, Carter JP . Modelling the effect of initial density on soil-water characteristic curves. Géotechnique, 2012,62(8):669-680
    [32] Gallipoli D, Wheeler S, Karstunen M . Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique, 2003,53(1):105-112
    [33] Cheng GD . Permafrost studies in the Qinghai-Tibet plateau for road construction. ASCE Journal of cold regions Engineering, 2005,19(1):19-29
    [34] Qi JL, MA W, Sun CS , et al. Seismic response of seasonally frozen ground. Cold Regions Sciences And Technology, 2006,44(2):111-120
    [35] Mortara G . A new yield and failure criterion for geomaterials. Géotechnique, 2008,58(2):125-132
    [36] Nakai T, Masuoka H . Shear behaviors of sand and clay under three-dimensional stress condition. Soils and Foundations, 1983,23(2):26-42
    [37] Mogi K . Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research, 1971,76(5):1255-1269
    [38] Lagioia R, Nova R . An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 1995,5(4):633-648
    [39] Nguyen D . Un concept de rupture unifié pour les matériaux rocheux derises et poreux. [PhD Thesis]. école Polytechnique de Montréal, 1972 ( in French)
    [40] Sun D, Matsuoka H, Yao YP , et al. An elasto-plastic model for unsaturated soil in three-dimensional %stresses. Soils and Foundations, 2000,40(3):17-28
  • 加载中
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  165
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回