EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细分曲面边界元法的黏附吸声材料结构拓扑优化分析

陈磊磊 卢闯 徐延明 赵文畅 陈海波

陈磊磊, 卢闯, 徐延明, 赵文畅, 陈海波. 细分曲面边界元法的黏附吸声材料结构拓扑优化分析[J]. 力学学报, 2019, 51(3): 884-893. doi: 10.6052/0459-1879-18-354
引用本文: 陈磊磊, 卢闯, 徐延明, 赵文畅, 陈海波. 细分曲面边界元法的黏附吸声材料结构拓扑优化分析[J]. 力学学报, 2019, 51(3): 884-893. doi: 10.6052/0459-1879-18-354
Leilei Chen, Chuang Lu, Yanming Xu, Wenchang Zhao, Haibo Chen. TOPOLOGY OPTIMIZATION ANALYSIS OF ADHESIVE SOUND ABSORBING MATERIALS STRUCTURE WITH SUBDIVISION SURFACE BOUNDARY ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 884-893. doi: 10.6052/0459-1879-18-354
Citation: Leilei Chen, Chuang Lu, Yanming Xu, Wenchang Zhao, Haibo Chen. TOPOLOGY OPTIMIZATION ANALYSIS OF ADHESIVE SOUND ABSORBING MATERIALS STRUCTURE WITH SUBDIVISION SURFACE BOUNDARY ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 884-893. doi: 10.6052/0459-1879-18-354

细分曲面边界元法的黏附吸声材料结构拓扑优化分析

doi: 10.6052/0459-1879-18-354
基金项目: 1) 国家自然科学基金资助项目(11702238).
详细信息
    通讯作者:

    陈磊磊

  • 中图分类号: O343.2;

TOPOLOGY OPTIMIZATION ANALYSIS OF ADHESIVE SOUND ABSORBING MATERIALS STRUCTURE WITH SUBDIVISION SURFACE BOUNDARY ELEMENT METHOD

  • 摘要: 等几何分析采用样条基函数构造几何模型和实施变量近似,实现了计算机辅助设计和辅助工程的无缝连接,并已广泛应用于弹性力学、电磁场和位势问题等领域.然而直接采用等几何方法难以构造复杂模型,限制了该方法在大规模实际工程问题上的应用.细分曲面法可用于克服这一问题,该方法对传统模型的离散网格进行细分和拟合操作,构造出极限光滑曲面,连续性更高,对复杂结构的适用性更强.该方法主要有以下优点:(1)适用于任意拓扑结构;(2)数值计算稳定;(3)实施简单;(4)局部细化与连续性控制.由于该方法在复杂结构模型构造方面具有较强的灵活性和便利性,已被广泛应用于航空航天、汽车、动画、游戏制作等建模领域.将细分曲面法与边界元法相结合进行结构声学分析,几何场与物理场均采用箱样条基函数进行插值近似.以黏附吸声材料结构的声散射问题为例,建立吸声材料分布拓扑优化数学模型,并采用移动渐进线算法进行设计变量更新,最终获得最优材料分布.

     

  • [1] Hughes TJR, Cottrell JA, Bazilevs Y.Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39): 4135-4195
    [2] Burkhart D, Hamann B, Umlauf G.Iso-geometric finite element analysis based on catmull-clark subdivision solids. Computer Graphics Forum, 2010, 29(5): 1575-1584
    [3] Doo D, Sabin M.Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 1978, 10(6): 356-360
    [4] B?hm W, Farin G, Kahmann J.A survey of curve and surface methods in CAGD. Computer Aided Geometric Design, 2015, 1(1): 1-60
    [5] Dyn N.A butterfly subdivision scheme for surface interpolation with tension control. Acm Trans Graph, 1990, 9(2): 160-169
    [6] Kobbelt L.$\sqrt 3 $-subdivision. Proceedings of Acm Siggraph, 2000, 18(1): 103-112
    [7] Güdükbay U, Durup$\imath $nar F. Three-dimensional Scene Representations: Modeling, Animation, and Rendering Techniques. Three-Dimensional Television. Berlin Heidelberg: Springer 2008: 165-200
    [8] Cirak F, Ortiz M, Schr?der P.Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 2000, 47(12): 2039-2072
    [9] Bandara K, Rüberg T, Cirak F.Shape optimisation with multiresolution subdivision surfaces and immersed finite elements. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 510-539
    [10] 姚振汉, 王海涛. 边界元法. 北京:高等教育出版社, 2010: 101-155
    [10] (Yao Zhenghan, Wang Haitao. Boundary Element Methods.Beijing: Higher Education Press, 2010: 101-150 (in Chinese))
    [11] 周琪, 陈永强. 轴对称薄壁结构自由振动的边界元分析. 力学学报, 2019, 51(1): 146-158
    [11] (Zhou Qi, Chen Yongqiang.Free vibration analysis of thin-walled axisymmetric structures with boundary element method. Theoretical and Applied Mechanics, 2019, 51(1): 146-158 (in Chinese))
    [12] 李珺璞, 陈文. 一种模拟大规模高频声场的双层奇异边界法. 力学学报, 2018, 50(4): 961-969
    [12] (Li Junpu, Chen Wen.A dual-level singular boundary method for large-scale high frequency sound field analysis. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 961-969 (in Chinese))
    [13] 王俊鹏, 校金友, 文立华. 大规模边界元模态分析的高效数值方法. 力学学报, 2017, 49(5): 1070-1080
    [13] (Wang Junpeng, Xiao Jinyou, Wen Lihua.An efficient numerical method for large-scale modal analysis using boundary element method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1070-1080 (in Chinese))
    [14] Chen L, Zheng C, Chen H.FEM/wideband FMBEM coupling for structural--acoustic design sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 2014, 276(7): 1-19
    [15] 陈磊磊, 陈海波, 郑昌军等. 基于有限元与宽频快速多极边界元的二维流固耦合声场分析. 工程力学, 2014, 31(8): 63-69
    [15] (Chen Leilei, Chen Haibo, Zhang Changjun, et al.FEM/Wideband FMBEM coupling analysis for two dimensional acoustic fluid-structure interaction problems. Engineering Mechanics, 2014, 31(8): 63-69 (in Chinese))
    [16] 牛忠荣, 胡宗军, 葛仁余等. 二维边界元法高阶元几乎奇异积分半解析算法. 力学学报, 2013, 45(6): 897-907
    [16] (Niu Zhongrong, Hu Zongjun, Ge Renyu, et al.A new semi-analysis algorithm of nearly singular integrals in high order boundary element analysis of 2D elasticity. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 897-907 (in Chinese))
    [17] 高效伟, 冯伟哲, 杨恺. 边界元中计算任意高阶奇异线积分的直接法. 力学学报, 2014, 46(3): 428-435
    [17] (Gao Xiaowei, Feng Weizhe, Yang Kai.A direct method for evaluating line integrals with arbitrary high order of singularities. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 428-435 (in Chinese))
    [18] 覃先云, 张见明, 庄超. 基于参数曲面三维势问题的边界面法. 计算力学学报, 2011, 28(3): 326-331
    [18] (Qin Xianyun, Zhang Jianming, Zhuang Chao.A boundary face method for 3D potential problems based on parametric surface. Computational Mechanics, 2011, 28(3): 326-331 (in Chinese))
    [19] Zhang J, Lin W, Dong Y.A dual interpolation boundary face method for elasticity problems, European Journal of Mechanics -A/Solids, 2019, 73: 500-511
    [20] Zhang J, Lin W, Dong Y.A double-layer interpolation method for implementation of BEM analysis of problems in potential theory. Applied Mathematical Modelling, 2017, 51: 250-269
    [21] Liu Z, Majeed M, Cirak F, et al.Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces. International Journal for Numerical Methods in Engineering, 2018, 113(9): 1507-1530
    [22] Cummer S A, Christensen J, Alù A.Controlling sound with acoustic metamaterials. Nature Reviews Materials, 2016, 1(3): 16001
    [23] Zhao W, Chen L, Zheng C, et al.Design of absorbing material distribution for sound barrier using topology optimization. Structural and Multidisciplinary Optimization, 2017, 56(2): 315-329
    [24] Pollini N, Lavan O, Amir O.Adjoint sensitivity analysis and optimization of hysteretic dynamic systems with nonlinear viscous dampers. Structural and Multidisciplinary Optimization, 2017(12): 1-17
    [25] Zheng C, Matsumoto T, Takahashi T, et al.A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method. Engineering Analysis with Boundary Elements, 2012, 36(3): 361-371
    [26] Kim NH, Dong J, Choi KK, et al.Design sensitivity analysis for a sequential structural-acoustic problem. Journal of Sound and Vibration, 2003, 263(3): 569-591
    [27] Goo S, Wang S, Kook J, et al.Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 834-856
    [28] Denli H, Sun JQ.Structural-acoustic optimization of sandwich cylindrical shells for minimum interior sound transmission. Journal of Sound and Vibration, 2008, 316(1): 32-49
    [29] Chen L, Liu C, Zhao W, et al.An isogeometric approach two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 507-532
    [30] Zhao W, Zheng C, Liu C, et al.Minimization of sound radiation in fully coupled structural-acoustic systems using FEM-BEM based topology optimization. Structural and Multidisciplinary Optimization, 2018, 58(1): 115-128
    [31] Svanberg K.The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373
    [32] Stam J.Exact evaluation of Loop subdivision surfaces at arbitrary parameter values // International Conference on Computer Graphics and Interactive Techniques, 1998: 111-124
    [33] 张健飞, 姜弘道. 适合于求解边界元方程组的GMRES算法的实用化和并行化研究. 计算力学学报, 2004, 21(5): 620-624
    [33] (Zhang Jianfei, Jiang Hongdao.Study on the utilization and parallelization of the GMRES algorithm for BEM systems solution. Computational Mechanics, 2004, 21(5): 620-624 (in Chinese))
    [34] Berardi U, Iannace G.Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics, 2017, 115: 131-138
    [35] 刘书田, 贺丹. 基于SIMP插值模型的渐进结构优化方法. 计算力学学报, 2009, 26(6): 761-765
    [35] (Liu Shutian, He Dan.SIMP-based evolutionary structural optimization method for topology optimization. Computational Mechanics, 2009, 26(6): 761-765 (in Chinese))
    [36] Xu S, Cai Y, Cheng G.Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 2010, 41(4): 495-505
  • 加载中
计量
  • 文章访问数:  1539
  • HTML全文浏览量:  245
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 刊出日期:  2019-05-18

目录

    /

    返回文章
    返回