EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种考虑非比例附加损伤的多轴低周疲劳模型

崔向阳 洪克城

崔向阳, 洪克城. 一种考虑非比例附加损伤的多轴低周疲劳模型[J]. 力学学报, 2019, 51(3): 863-872. doi: 10.6052/0459-1879-18-347
引用本文: 崔向阳, 洪克城. 一种考虑非比例附加损伤的多轴低周疲劳模型[J]. 力学学报, 2019, 51(3): 863-872. doi: 10.6052/0459-1879-18-347
Xiangyang Cui, Kecheng Hong. A MULTIAXIAL LOW-CYCLE FATIGUE MODEL CONSIDERING NON-PROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 863-872. doi: 10.6052/0459-1879-18-347
Citation: Xiangyang Cui, Kecheng Hong. A MULTIAXIAL LOW-CYCLE FATIGUE MODEL CONSIDERING NON-PROPORTIONAL ADDITIONAL DAMAGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 863-872. doi: 10.6052/0459-1879-18-347

一种考虑非比例附加损伤的多轴低周疲劳模型

doi: 10.6052/0459-1879-18-347
基金项目: 1) 国家自然科学基金创新研究群体项目(51621004),国家重点研发计划项目(2017YFB1002704),国家自然科学基金项目(11472101)资助.
详细信息
    通讯作者:

    崔向阳

  • 中图分类号: TG111.8;

A MULTIAXIAL LOW-CYCLE FATIGUE MODEL CONSIDERING NON-PROPORTIONAL ADDITIONAL DAMAGE

  • 摘要: 在实际工作环境中,机械结构往往承受着多轴非比例循环载荷.相比多轴比例循环加载,多轴非比例循环加载由于产生了附加强化现象,造成机械结构疲劳寿命下降.通过分析薄壁圆筒管件在非比例加载工况下应力应变变化规律和发生破坏位置,本文基于临界面法提出一种考虑多轴非比例附加损伤的疲劳模型.该模型将最大剪切应变幅平面作为临界面,提出一个新的附加强化因子,结合临界面上切应变幅和正应变幅组成新的多轴疲劳损伤参量.此参量不仅考虑了非比例加载下临界面上正应变幅和切应变幅对材料造成的疲劳损伤,还考虑到应变路径的变化和材料非比例加载敏感特性对材料疲劳寿命的影响.考虑到实际情况下模型所需材料附加强化系数有时难以获得的情况,给出了材料附加强化系数的有关近似计算公式.只需要材料基本力学参数便可得到材料附加强化系数,方便工程实际应用.采用8种材料的多轴疲劳寿命数据对提出的新模型进行检验,结果表明所提出的新模型与传统多轴疲劳模型相比预测寿命精度更高.

     

  • [1] 卢梦凯,张洪武,郑勇刚. 应变局部化分析的嵌入强间断多尺度有限元法. 力学学报, 2017, 49(3): 649-658
    [1] (Lu Mengkai, Zhang Hongwu, Zheng Yonggang.Embedded strong discontinuity model based multiscale finite element method for strainlocalization analysis. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 649-658 (in Chinese))
    [2] 朱文洁, 吕俊男, 李群. 基于M 积分的脆性材料微缺陷等效损伤面积/体积表征. 力学学报,2018, 50(2): 297-306
    [2] (Zhu Wenjie, Lü Junnan, Li Qun.The calibration of microdefects induced equivalent damage area/volume of brittle materials by usingb the M-integral. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 297-306 (in Chinese))
    [3] 古斌, 郭宇立, 李群. 基于构型力断裂准则的裂纹与夹杂干涉问题. 力学学报, 2017, 49(6): 1312-1321
    [3] (Gu Bin, Guo Yuli, Li Qun.Crack interacting with an individual inclusion by the fracture criterion of configurational force. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1312-1321 (in Chinese))
    [4] 韩庆华,王培鹏,芦燕. 考虑全平面损伤参量的多轴低周疲劳寿命预测方法研究. 天津大学学报(自然科学与工程技术版), 2018, 51(S1): 49-56
    [4] (Han Qinghua,Wang Peipeng,Lu Yan,Multiaxial low-cycle fatigue prediction method considering damage parameter of plane in every directionet. Journal of Tianjin University $Science and Technology, 2018, 51(S1): 49-56(in Chinese))
    [5] Brown MW, Miller KJ.A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Engng,1973, 187: 745-755
    [6] Kandil FA, BrownMW, Miller KJ. Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. The Metal Society,1982, 280: 203-210
    [7] Fatemi A, Socie DF.A critical plane approach to multiaxial fatigue damage including out of plane loading. Fatigue Fract Engng Mater Struct, 1988, 14: 149-165
    [8] Pitatzis N, Savaidis G.An energy-critical plane based fatigue damage approach for the life prediction of metal alloys. Materials Science and Engineering Conference Series, 2016: 012049, 1-11
    [9] Li J, Zhang Z P, Sun Q, et al.Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. International Journal of Fatigue, 2011, 33(2): 90-101
    [10] 赵而年,瞿伟廉.一种新的多轴非比例低周疲劳寿命预测临界面模型. 力学学报, 2016, 48(4): 944-952
    [10] (Zhao Ernian, Qu Weilian.A new proposal for multiaxial low-cycle fatigue life prediction under non-proportional loading. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 944-952 (in Chinese))
    [11] 周昊,刘英芳,刘刚等.考虑残余应力的焊接结构多轴疲劳准则. 焊接学报, 2017, 38(11): 41-46
    [11] (Zhou Hao, Liu Yingfang, Liu Gang,et al.Multiaxial fatigue criteria of welded structures considering the residual stress.Transactions of the China Welding Institution, 2017, 38(11): 41-46 (in Chinese))
    [12] 赵丙峰,谢里阳,徐国梁等.多轴疲劳寿命预测方法. 失效分析与预防, 2017, 12(5): 323-330
    [12] (Zhao Bingfeng, Xie Liyang, Xu Guoliang, et al.Summarization of multi-axial fatigue life prediction methods. Failure Analysis and Prevention, 2017, 12(5): 323-330 (in Chinese))
    [13] Carpinteri A, Spagnoli A, Vantadori S.A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 1007-1036
    [14] Chen X, Gao Q, Sun XF.Low-cycle fatigue under non-proportional loading. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(7): 839-854
    [15] Itoh T, Nakata T, Sakane M, et al.Nonproportional Low cycle fatigue of 6061 aluminum alloy under 14 strain paths. European Structural Integrity Society, 1999, 25(99): 41-54
    [16] Luo P, Yao W, Susmel L, et al.A survey on multiaxial fatigue damage parameters under non-proportional loadings. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9): 1323-1342
    [17] Borodii MV, Shukaev SM.Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. International Journal of Fatigue, 2007, 29(6): 1184-1191
    [18] 姜潮, 邓群, 李博川. 考虑非比例附加损伤的多轴低周疲劳寿命模型. 力学学报, 2015, 47(4): 634-641
    [18] (Jiang Chao,Deng Qun,Li Bochuan.A new multiaxial fatigue life prediction model based on the nonproportional additional damage. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 634-641(in Chinese))
    [19] 陈志超. 多轴非比例载荷下金属材料的疲劳寿命预测. [硕士论文]. 南京: 南京航空航天大学, 2011
    [19] (Chen Zhichao.Fatigue life prediction of metal under multiaxial nonproportional loading. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese))
    [20] Shamsaei N, Fatemi A.Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Materials Science & Engineering A, 2010, 527(12): 3015-3024
    [21] 胡志忠, 曹淑珍. 形变硬化指数与强度的关系. 西安交通大学学报, 1993(6): 71-76
    [21] (Hu Zhizhong, Cao Shuzhen.Relation between strain-hardening exponent and strength. Journal of Xi'an Jiaotong University, 1993(6): 71-76(in Chinese))
    [22] 孙东继, 林建平, 胡巧声等. 金属板料幂指型硬化模型应变强化系数K值研究. 塑性工程学报, 2009, 16(1): 149-152
    [22] (Sun Dong-ji, Lin Jianping, Hu Qiaosheng, et al.Research on strength coefficient in power hardening model of sheet metal. Journal of Plasticity Engineering, 2009, 16(1): 149-152 (in Chinese))
    [23] Lopez Z, Fatemi A, Lopez Z, et al.A method of predicting cyclic stress--strain curve from tensile properties for steels. Materials Science & Engineering A, 2012, 556(9): 540-550
    [24] Itami Y, Akamatsu N, Tomita Y, et al.Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type 304 stainless steel. Fatigue & Fracture of Engineering Materials & Structures, 1989, 12(2): 77-92
    [25] Socie DF.Multiaxial fatigue damage models. Journal of Engineering Materials and Technology, 1987, 109(4): 293-298
    [26] Kalluri S, Bonacuse PJ.In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760C. NASA TM-105765. National Aeronautics and Space Administration, San Diego, 1991, 1-20
    [27] Gao Z, Zhao T, Wang X, et al.Multiaxial fatigue of 16MnR steel. Journal of Pressure Vessel Technology, 2009, 131(2): 021403
    [28] Shamsaei N, Gladskyi M, Panasovskyi K, et al.Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects. International Journal of Fatigue, 2010, 32(11): 1862-1874
    [29] Sun GQ, Shang DG.Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis. Materials & Design, 2010, 31(1): 126-133
    [30] Shamsaei N, Fatemi A.Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(8): 631-646
    [31] Zhao T, Jiang Y.Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 2008, 30(5): 834-849
    [32] Ma S, Markert B, Yuan H.Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional loadings. International Journal of Fatigue, 2017, 97: 214-226
    [33] 徐燊, 朱顺鹏, 郝永振等. 基于临界面--损伤参量法的涡轮盘多轴疲劳寿命预测. 航空学报, 2018, 39(9): 221930, 1-8
    [33] (Xu Shen, Zhu Shunpeng, Hao Yongzhen, et al. Multiaxial fatigue life prediction of an HPT disc based on critical plane-damage parameter. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 221930, 1-8 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  180
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 刊出日期:  2019-05-18

目录

    /

    返回文章
    返回