EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋地震工程流固耦合问题统一计算框架

陈少林 柯小飞 张洪翔

陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报, 2019, 51(2): 594-606. doi: 10.6052/0459-1879-18-333
引用本文: 陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报, 2019, 51(2): 594-606. doi: 10.6052/0459-1879-18-333
Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. doi: 10.6052/0459-1879-18-333
Citation: Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. doi: 10.6052/0459-1879-18-333

海洋地震工程流固耦合问题统一计算框架

doi: 10.6052/0459-1879-18-333
基金项目: 国家自然科学基金资助项目(51178222);国家自然科学基金资助项目(51278260)
详细信息
    作者简介:

    2) 陈少林,教授,主要研究方向:地震工程. E-mail: icmcsl@nuaa.edu.cn

  • 中图分类号: TU435

A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING

  • 摘要: 海底地震动的模拟以及海洋工程结构的地震反应分析中,涉及到海水、饱和海床、弹性基岩、结构之间的相互耦合.传统的方法分别采用声波方程描述理想流体、Biot方程描述饱和海床、弹性波方程描述基岩和结构,分别考虑相互之间的耦合,十分不便.本文基于理想流体、固体分别为饱和多孔介质的特殊情形(孔隙率分别为1和0),由饱和多孔介质的Biot方程可退化得到理想流体的声波方程和固体的弹性波方程.然后,以饱和多孔介质方程为基础,经集中质量有限元离散,考虑不同孔隙率的饱和多孔介质之间耦合的一般情形,建立了该耦合情形的求解方法.进一步论证了该一般情形的耦合计算方法可分别退化到流体与固体、流体与饱和多孔介质、固体与饱和多孔介质之间的耦合计算,从而将流体、固体、饱和多孔介质间的耦合问题纳入到统一计算框架,并编制了相应的三维并行分析程序.以P-SV波垂直入射时,半无限层状海水-饱和海床、海水-弹性基岩、海水-饱和海床-弹性基岩三种情形的动力分析为例,采用统一计算框架结合透射边界条件进行求解,并与传递矩阵方法得到的解进行对比,验证了该统一计算框架的有效性以及并行计算的可行性.

     

  • [1] Nakamura T, Takenaka H, Okamoto T , et al. FDM Simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of Seismological Society of America, 2012,102(6):2420-2435
    [2] Petukhin A, Iwata T, Kagawa T . Study on the effect of the oceanic water layer on strong ground motion simulations. Earth Planets Space, 2010,62:621-630
    [3] Jianhong Y , Seismic response of poroelastic seabed and composite breakwater under strong earthquake loading. Bulletin of Earthquake Engineering, 2012,10:1609-1633
    [4] Cheng XS, Xu WW, Yue CQ , et al. Seismic response of fluid-structure interaction of undersea tunnel during bidirction earthquake. Ocean Engineering, 2014,75:64-70
    [5] Jin HL, Seo SI, Mun HS . Seismic behaviors of a floating submerged tunnel with a rectangular cross-section. Ocean Engineering, 2016,127:32-47
    [6] Farhat C, Lesoinne M , LeTallec P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 1998,157(1):95-114
    [7] Farhat C, Lesoinne M . Two effcient staggered algorithms for serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied Mechanics & Engineering, 2000,182:499-515
    [8] Farhat C, Zee KGVD, Geuzaine P . Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics & Engineering, 2006,195(17):1973-2001
    [9] Bathe KJ, Zhang H . Finite element developments for general fluid flows with structural interactions. International Journal for Numerical Methods in Engineering, 2010,60(1):213-232
    [10] Degroote J, Haelterman R, Annerel S , et al. Performance of partitioned procedures in fluid-structure interaction. Computers & Structures, 2010,88(7):446-457
    [11] Hou G, Wang J, Layton A . Numerical methods for fluid-structure Interaction-A review. Communications in Computational Physics, 2012,12(2):337-377
    [12] Habchi C, Russeil S, Bougeard D , et al. Partitioned solver for strongly coupled fluid-structure interaction. Computers & Fluids, 2013,71(1):306-319
    [13] Mehl M, Uekermann B, Bijl H , et al. Parallel coupling numerics for partitioned fluid-structure interaction simulations. Computers & Mathematics with Applications, 2016,71(4):869-891
    [14] Bungartz HJ, Lindner F, Gatzhammer B , et al. preCICE-A fully parallel library for multi-physics surface coupling. Computers & Fluids, 2016,141:250-258
    [15] Banks JW, Henshaw WD, Kapila AK , et al. An added-mass partition algorithm for fluid-structure interactions of compressible fluids and nonlinear solids. Journal of Computational Physics, 2016,305(C):1037-1064
    [16] Basting S, Quaini A, Glowinski R . Extended ALE Method for fluid-structure interaction problems with large structural displacements. Journal of Computational Physics, 2016,331(C):312-336
    [17] Biot MA . Theory of propagation of elastic waves in a fluid-saturated porous solid. Acoust Soc Am, 1956,28:168-191
    [18] Biot MA . Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962,33(4):1482-1498
    [19] Komatitsch D, Barnes C, Tromp J . Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics, 2000,65(2):623-631
    [20] Link G, Kaltenbacher M, Breuer M , et al. A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics & Engineering, 2009,198(41):3321-3334
    [21] 李伟华 . 考虑水-饱和土场地-结构耦合时的沉管隧道地震反应分析. 防灾减灾工程学报, 2010,30(6):607-613
    [21] ( Li Weihua . Seismic Response analysis of immersed tube tunnels considering water saturated soil site structure coupling. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(6):607-613(in Chinese))
    [22] 廖振鹏 . 工程波动理论导论. 第2版. 北京: 科学出版社, 2002: 136-285
    [22] ( Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering(2nd edn). Beijing: Science Press, 2002: 136-285(in Chinese))
    [23] 邢浩洁, 李鸿晶 . 透射边界条件在波动谱元模拟中的实现:二维波动. 力学学报, 2017,49(4):894-906
    [23] ( Xing Haojie, Li Hongjing . Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese))
    [24] 谷音, 刘晶波, 杜修力 . 三维一致粘弹性人工边界及等效粘弹性边界单元. 工程力学, 2007,24(12):31-37
    [24] ( Gu Lin, Liu Jingbo, Du Xiuli . Three-dimensional uniform viscoelastic artificial boundary and equivalent viscoelastic boundary element. Journal of Engineering Mechanics, 2007,24(12):31-37(in Cinese))
    [25] 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427
    [25] ( Liu Jingbo , BaoXin, Tan Hui, et al. Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese))
    [26] 赵宇昕, 陈少林 . 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016,48(5):1145-1158
    [26] ( Zhao Yuxin, Chen Shaolin . Discussion on the matrix propagator method to analyze the response od saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1145-1158 (in Chinese))
    [27] 刘晶波, 谭辉, 宝鑫 等. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43
    [27] ( Liu Jingbo, Tan Hui, Bao Xin , et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese))
    [28] 陈少林, 廖振鹏, 陈进 . 两相介质近场波动模拟的解耦方法, 地球物理学报, 2005,48(4):909-917
    [28] ( Chen Shaolin, Liao Zhenpeng, Chen Jin . Decoupling method for near-field wave simulation of two-phase media. Journal of Geophysics, 2005,48(4):909-917 (in Chinese))
    [29] Deresiewicz H, Rice JT . The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bull Seis Soc Am, 1964,54(1):409-416
    [30] Deresiewicz H . The effect of boundaries on wave propagation in a liquid-filled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull Seis Soc Am, 1964,54(1):425-430
    [31] Thomson WT . Transmission of elastic waves through a stratified solid media. Journal of Applied Physics, 1950,21:89-93
    [32] Haskell NA . The dispersion of surface waves on multilayered media. Bull Seismol Soc Am, 1953,43:17-34
    [33] 柯小飞, 陈少林, 张洪翔 .P-SV波入射时海水-层状海床体系的自由场分析 . 振动工程学报, 2018, 录用
    [33] ( Ke Xiaofei, Chen Shaolin, Zhang Hongxiang . Freefield analysis of seawater-layered seabed system at P-SV wave incident. Journal of Vibration Engineering, 2018, Accepted (in Chinese))
  • 加载中
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  100
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-12
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回