EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑间隙反馈控制时滞的磁浮车辆稳定性研究

吴晗 曾晓辉 史禾慕

吴晗, 曾晓辉, 史禾慕. 考虑间隙反馈控制时滞的磁浮车辆稳定性研究[J]. 力学学报, 2019, 51(2): 550-557. doi: 10.6052/0459-1879-18-329
引用本文: 吴晗, 曾晓辉, 史禾慕. 考虑间隙反馈控制时滞的磁浮车辆稳定性研究[J]. 力学学报, 2019, 51(2): 550-557. doi: 10.6052/0459-1879-18-329
Han Wu, Xiaohui Zeng, Hemu Shi. STABILITY ANALYSIS OF MAGLEV VEHICLE WITH DELAYED POSITION FEEDBACK CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 550-557. doi: 10.6052/0459-1879-18-329
Citation: Han Wu, Xiaohui Zeng, Hemu Shi. STABILITY ANALYSIS OF MAGLEV VEHICLE WITH DELAYED POSITION FEEDBACK CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 550-557. doi: 10.6052/0459-1879-18-329

考虑间隙反馈控制时滞的磁浮车辆稳定性研究

doi: 10.6052/0459-1879-18-329
基金项目: 国家自然科学基金(51805522);国家自然科学基金(11672306);国家自然科学基金(51490673);国家重点研发计划课题(2016YFB1200602);中科院先导专项(XDB22020100);中科院信息化专项(XXH13506-204)
详细信息
    作者简介:

    2) 曾晓辉,研究员,主要研究方向:车辆动力学、波流与海洋结构的相互作用.E-mail: zxh@imech.ac.cn

  • 中图分类号: U266.4

STABILITY ANALYSIS OF MAGLEV VEHICLE WITH DELAYED POSITION FEEDBACK CONTROL

  • 摘要: 常导磁吸型(EMS)磁悬浮列车在悬浮控制中的每个环节,时滞是不可避免的,当时滞超过一定程度后,系统有可能失稳.本文针对EMS磁浮列车控制环节的临界时滞与车辆参数(如运行速度、反馈控制增益、导轨参数和悬挂参数)的关系开展研究.建立了磁浮车辆/导轨耦合动力学模型,车辆包含1节车辆和4个磁浮架,考虑车辆的10个自由度,每个磁浮架上包含4个悬浮电磁铁.导轨模拟为一系列简支Bernoulli-Euler梁,采用模态叠加法对导轨振动方程进行求解.采用传统线性电磁力模型实现车辆和轨道的耦合.采用比例-微分控制算法对电磁铁电流进行反馈控制,实现车辆稳定悬浮,并假设时滞均发生在控制环节,且只考虑间隙反馈控制环节的时滞.采用四阶龙格库塔法对耦合系统动力学方程进行求解,编写了数值仿真程序,计算得到车辆导轨耦合系统在考虑间隙反馈控制时滞时的响应.将系统运动发散时的时滞大小视为临界时滞,开展了参数规律影响分析.通过分析,给出了提高时滞条件下车辆稳定性的方法,包括增大导轨的弯曲刚度和阻尼比,减小间隙反馈控制增益并增大速度反馈控制增益,以及增大二系悬挂阻尼.

     

  • [1] Lee HW, Kim KC, Lee J . Review of maglev train technologies. IEEE Transactions on Magnetics, 2006,42(7):1917-1925
    [2] 翟婉明, 赵春发 . 磁浮车辆/轨道系统动力学(I)-磁轨相互作用及稳定性. 机械工程学报, 2005,41(7):1-10
    [2] ( Zhai Wanming, Zhao Chunfa . Dynamics of maglev vehicle/guideway systems (I)-magnet/rail interaction and system stability. Chinese Journal of Mechanical Engineering, 2005,41(7):1-10 (in Chinese))
    [3] 时瑾, 魏庆朝, 万传风 等. 随机不平顺激励下磁浮车辆轨道梁动力响应. 力学学报, 2006,38(6):850-857
    [3] ( Shi Jin, Wei Qingchao, Wan Chuanfeng , et al. Dynamic response of maglev vehicle track beam under random irregularity. Chinese Journal of Theoretical and Applied Mechanics, 2006,38(6):850-857 (in Chinese))
    [4] Zhao CF, Zhai WM . Maglev vehicle guideway vertical random response and ride quality. Vehicle System Dynamics, 2002,38(3):185-210
    [5] Wu H, Zeng XH, Yu Y . Motion stability of high-speed maglev systems in consideration of aerodynamic effect: A study of a single magnetic suspension system. Acta Mechanica Sinica, 2017,33(6):1084-1094
    [6] Han HS, Yim BH, Lee JK , et al. Effects of guideway's vibration characteristics on the dynamics of a maglev vehicle. Vehicle System Dynamics, 2009,47(3):309-324
    [7] Han HS, Yim BH, Lee NJ , et al. Prediction of ride quality of a Maglev vehicle using a full vehicle multi-body dynamic model. Vehicle System Dynamics, 2009,47(10):1271-1286
    [8] Yim BH, Han HS, Lee JK , et al. Curving performance simulation of an EMS-type maglev vehicle. Vehicle System Dynamics, 2009,47(10):1287-1304
    [9] Lee JS, Kwon SD, Kim MY , et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges. Journal of Sound and Vibration, 2009,328(3):301-317
    [10] Kim KJ, Han JB, Han HS , et al. Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds. Vehicle System Dynamics, 2015,53(4):587-601
    [11] Zhou DF, Hansen CH, Li J . Suppression of maglev vehicle-girder self-excited vibration using a virtual tuned mass damper. Journal of Sound and Vibration, 2011,330(5):883-901
    [12] Zhou DF, Li J, Hansen CH . Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration. Journal of Sound and Vibration, 2011,330(24):5791-5811
    [13] Zhou DF, Li J, Zhang K . Amplitude control of the track-induced self-excited vibration for a maglev system. ISA Transactions, 2014,53(5):1463-1469
    [14] Li JH, Li J, Zhou DF , et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester. IEEE Transactions on Industrial Electronics, 2015,62(5):2942-2951
    [15] 王洪坡 . EMS型低速词素列车/轨道系统的动力相互作用问题研究. [博士论文]. 长沙: 国防科技大学, 2007
    [15] ( Wang Hongpo . Vehicle-Guideway Dynamic Interaction of the EMS Low Speed Maglev Vehicle. [PhD Thesis]. Changsha: National University of Defense Technology, 2007 (in Chinese))
    [16] Xu J Q, Chen C, Gao D G , et al. Nonlinear dynamic analysis on maglev train system with flexible guideway and double time-delay feedback control. Journal of Vibroengineering, 2017,19(8):6346-6362
    [17] 张舒, 徐鉴 . 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017,49(3):565-587
    [17] ( Zhang Shu, Xu Jian . Review on nonlinear dynamics in system with coupling delays. Chinese Journal of Theoretical Applied Mechnaics, 2017,49(3):565-587 (in Chinese))
    [18] 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108.
    [18] ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time-varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108 (in Chinese))
    [19] 公徐路, 许鹏飞 . 含时滞反馈与涨落质量的记忆阻尼系统的随机共振. 力学学报, 2018,50(4):880-889
    [19] ( Gong Xulu, Xu Pengfei . Stochastic resonance of a memorial-damped system with time delay feedback and fluctuating mass. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):880-889 (in Chinese))
    [20] Li JH, Li J, Zhou DF , et al. Self-excited vibration problems of maglev vehicle-bridge interaction system. Journal of Central South University, 2014,21(11):4184-4192
    [21] Wang HP, Li J, Zhang K . Stability and Hopf bifurcation of the maglev system with delayed speed feedback control. Acta Automatica Sinica, 2007,33(8):829-834
    [22] Wang HP, Li J, Zhang K . Non-resonant response, bifurcation and oscillation suppression of a non-autonomous system with delayed position feedback control. Nonlinear Dynamics, 2008,51(3):447-464
    [23] Wang HP, Li J, Zhang K . Sup-resonant response of a non-autonomous maglev system with delayed acceleration feedback control. IEEE Transactions on Magnetics, 2008,44(10):2338-2350
    [24] Zhang LL, Campbell SA, Huang LH . Nonlinear analysis of a maglev system with time-delayed feedback control. Physica D-Nonlinear Phenomena, 2011,240(21):1761-1770
    [25] Zhang LL, Huang LH, Zhang ZZ . Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dynamics, 2009,57(1-2):197-207
    [26] Zhang LL, Zhang ZZ, Huang LH . Double Hopf bifurcation of time-delayed feedback control for maglev system. Nonlinear Dynamics, 2012,69(3):961-967
    [27] Zhang ZZ, Zhang LL . Hopf bifurcation of time-delayed feedback control for maglev system with flexible guideway. Applied Mathematics & Computation, 2013,219(11):6106-6112
    [28] Zhang LL, Huang JH, Huang LH , et al. Stability and bifurcation analysis in a maglev system with multiple delays. International Journal of Bifurcation & Chaos, 2015, 25(5):1550074-1-1550074-9
    [29] Zhang LL, Huang LH, Zhang ZZ . Hopf bifurcation of the maglev time-delay feedback system via pseudo-oscillator analysis. Mathematical and Computer Modelling, 2010,52(5):667-673
  • 加载中
计量
  • 文章访问数:  1259
  • HTML全文浏览量:  184
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回