EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计

童泽奇 刘杨 刘书田

童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. doi: 10.6052/0459-1879-18-323
引用本文: 童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. doi: 10.6052/0459-1879-18-323
Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. doi: 10.6052/0459-1879-18-323
Citation: Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. doi: 10.6052/0459-1879-18-323

面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计

doi: 10.6052/0459-1879-18-323
基金项目: 国家自然科学基金重点项目(11332004);高校基本科研业务费项目(DUT18ZD103);111引智计划项目(B14013)
详细信息
    作者简介:

    2) 刘书田,教授,研究方向:工程结构优化.E-mail: stliu@dlut.edu.cn

  • 中图分类号: U467.14,U463.83

DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING

  • 摘要: 作为汽车主要吸能构件的帽型梁的吸能提升设计是备受关注的问题.研究表明,通过优化薄壁结构的厚度可有效提升吸能性能,但复杂的厚度分布造成制造困难.针对可实现厚度调控的工艺,发展易制造的结构设计方法极为必要.本文基于变厚度柔性轧制工艺(variable gauge rolling, VGR)可实现厚度调控的特点,发展建立帽型梁横向冲击吸能优化设计方法.基于变厚度柔性轧制工艺生产的柔性轧制板(tailor rolled blanks, TRB)的特点,将受横向冲击的帽型薄壁梁设计成沿轴线分段变厚度、分段间设梯度过渡段的结构形式,通过调整各段厚度、分段位置和过渡层梯度变化规律,实现性能的优化.以应变能密度分布均匀为优化准则、基于混合元胞自动机(hybird cellular automata, HCA)方法构建优化模型和求解方法,并在迭代过程中施加满足轧制约束的过滤函数,使结构满足轧制工艺要求.其中,轧制约束的过滤函数由粒子群算法自动寻找.基于本文方法,具体设计了柔性轧制帽型梁横向冲击吸能最优的分段位置、各段厚度及过渡段厚度的梯度过渡方式,设计结果验证了方法的有效性.

     

  • [1] White M, Jones N, Abramowicz W . A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections. International Journal of Mechanical Sciences, 1999,41(2):209-233
    [2] White M, Jones N . Experimental study into the energy absorbing characteristics of top-hat and double-hat sections subjected to dynamic axial crushing. Journal of Automobile Engineering, 1999,213(3):259-278
    [3] Qi C, Sun Y, Hu HT , et al. On design of hybrid material double-hat thin-walled beams under lateral impact. International Journal of Mechanical Sciences, 2016,118:21-35
    [4] Fan Z, Lu G, Liu K . Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Engineering Structures, 2013,55(4):80-89
    [5] Ding X, Tong Z, Liu Y , et al. Dynamic axial crush analysis and design optimization of a square multi-cell thin-walled tube with lateral variable thickness. International Journal of Mechanical Sciences, 2018,140:13-26
    [6] Zhang X, Zhang H, Leng K . Experimental and numerical investigation on bending collapse of embedded multi-cell tubes. Thin-Walled Structures, 2018,127:728-740
    [7] Zhang X, Cheng G, You Z , et al. Energy absorption of axially compressed thin-walled square tubes with patterns. Thin-Walled Structures, 2007,45:737-746
    [8] Nikkhah H, Guo F, Chew Y , et al. The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading. Thin-Walled Structures, 2017,119:412-420
    [9] Song X, Sun G, Li G , et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Multidisciplinary Optimization, 2013,47:221-231
    [10] Reddy T, Wall R . Axial compression of foam-filled thin-walled circular tubes. International Journal of Impact Engineering, 1988,7:151-166
    [11] Li Z, Duan L, Chen T , et al. Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT). Structural and Multidisciplinary Optimization, 2018,57:865-875
    [12] Zheng G, Pang T, Sun G , et al. Theoretical, numerical, and experimental study on laterally variable thickness (LVT): Multi-cell tubes for crashworthiness. International Journal of Mechanical Sciences, 2016,118:283-297
    [13] Sun G, Pang T, Xu C , et al. Energy absorption mechanics for variable thickness thin-walled structures. Thin-Walled Structures, 2017,118:214-228
    [14] Sun G, Xu F, Li G , et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. International Journal of Impact Engineering, 2014,64:62-74
    [15] Ding C, Cui X, Li G . Accurate analysis and thickness optimization of tailor rolled blanks based on isogeometric analysis. Structural and Multidisciplinary Optimization, 2016,54:871-887
    [16] Mozumder C, Renaud J . Cost and mass optimization for crashworthiness design of shell-based structure using hybrid cellular automata//50th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, 2009: 2178
    [17] Merklein M, Johannes M, Lechner M , et al. A review on tailored blanks--Production, applications and evaluation. Journal of Materials Processing Technology, 2014,214:151-164
    [18] Sun G, Tan D, Lv X , et al. Multi-objective topology optimization of a vehicle door using multiple material tailor-welded blank (TWB): technology. Advances in Engineering Software, 2018,124:1-9
    [19] Liang J, Powers J, Stevens S . A tailor welded blanks design of automotive front rails by esl optimization for crash safety and lightweighting. SAE Technical Paper, 2018
    [20] Anand D, Chen D, Bhole S , et al. Fatigue behavior of tailor (laser)-welded blanks for automotive applications. Materials Science and Engineering: A, 2006,420:199-207
    [21] Kinsey B, Song N, Cao J. Analysis of clamping mechanism for tailor welded blank forming. SAE Transactions, 1999,
    [22] Hirt G, Abratis C, Ames J , et al. Manufacturing of sheet metal parts from tailor rolled blanks. Journal for Technology of Plasticity, 2005,30:1
    [23] Zhi Y, Wang X, Wang S , et al. A review on the rolling technology of shape flat products. The International Journal of Advanced Manufacturing Technology, 2018,94:4507-4518
    [24] Patel NM, Kang BS, Renaud JE . Crashworthiness design using a hybrid cellular automaton algorithm// ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2006: 151-162
    [25] Tovar A, Patel NM, Niebur GL , et al. Topology optimization using a hybrid cellular automaton method with local control rules. Journal of Mechanical Design, 2006,128:1205-1216
    [26] Duddeck F, Hunkeler S, Lozano P , et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Structural and Multidisciplinary Optimization, 2016,54:415-428
    [27] Gan N, Yao S, Xiong Y , et al. A hybrid cellular automaton-bi-directional evolutionary optimization algorithm for topological optimization of crashworthiness. Engineering Optimization, 2018,
    [28] Sun G, Tian J, Liu T , et al. Crashworthiness optimization of automotive parts with tailor rolled blank. Engineering Structures, 2018,169:201-215
    [29] Davoudi M, Kim C . Topology optimization for crashworthiness of thin-walled structures under axial crash considering nonlinear plastic buckling and locations of plastic hinges. Engineering Optimization, 2018: 1-21
    [30] 刘书田, 刘杨, 童泽奇 . 基于元胞自动机的变厚度薄壁梁侧向耐撞性优化设计方法. 计算力学学报, 2016,33(4):528-535
    [30] ( Liu Shutian, Liu Yang, Tong Zeqi . A hybrid cellular automata based method of variable thickness thin-walled beam for crashworthiness optimization under lateral impact. Chinese Journal of Computational Mechanics, 2016,33(4):528-535(in Chinese))
    [31] NHTS. Administration , Tile 49 Code of Federal Regulations Part 581, Bumper Standard. Washington, DC: National Archives and Records Administration, 1977
    [32] 张宗华 . 轻质吸能材料和结构的耐撞性分析与设计优化.[博士论文]. 大连: 大连理工大学, 2010
    [32] ( Zhang Zonghua . Crashworthiness analysis and design optimization of lightweight materials and structures for energy absorption. Dalian: [PhD Thesis]. Dalian University of Technology, 2010(in Chinese))
    [33] Zhang H, Sun G, Xiao Z , et al. Bending characteristics of top-hat structures through tailor rolled blank (TRB) process. Thin-Walled Structures, 2018,123:420-440
  • 加载中
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  122
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回