EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的橡胶材料弹性本构模型

魏志刚 陈海波

魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. doi: 10.6052/0459-1879-18-303
引用本文: 魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型[J]. 力学学报, 2019, 51(2): 473-483. doi: 10.6052/0459-1879-18-303
Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. doi: 10.6052/0459-1879-18-303
Citation: Zhigang Wei, Haibo Chen. A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483. doi: 10.6052/0459-1879-18-303

一种新的橡胶材料弹性本构模型

doi: 10.6052/0459-1879-18-303
基金项目: 国家自然科学基金(11772322);中国科学院战略性先导科技专项(B类)子课题(XDB22040502);安徽省教育厅高等学校自然科学研究(KJ2017A051)
详细信息
    作者简介:

    2) 魏志刚,副教授,研究方向:橡胶材料本构建模. E-mail: zhigwei@163.com

  • 中图分类号: TB535.1

A NEW ELASTIC MODEL FOR RUBBER-LIKE MATERIALS

  • 摘要: 橡胶类材料本构关系对于科学研究和工程应用具有重要意义,但已有的橡胶模型的拟合能力和可靠性需要进一步提高.为解决此问题,本文提出了一种新的橡胶材料的各向同性、不可压缩柯西弹性模型.研究了橡胶材料本构关系的模型形式,基于平面应力变形状态,提出了一种以较大的两个伸长率为自变量、适用于一般变形状态的橡胶材料弹性本构模型形式;研究了橡胶材料在侧面受约束条件下的变形规律,分析了橡胶材料本构关系需要满足的约束条件;在此基础上,结合一个可以通过实验确定的描述平面拉伸变形状态下的橡胶材料力学特性函数,提出一种将该函数拓展为平面应力状态一般模型的方法,并给出了一个具体的函数形式,形成了一个新的不可压缩、各向同性的橡胶材料弹性本构模型.使用5组包含3种类型实验的数据和一组较全面的双轴测试数据对该模型进行了参数拟合,结果表明:该模型具有很好的拟合精度和更高的可靠性,仅用一种类型实验数据,如单轴拉伸或者平面拉伸等,也能获得较好的拟合结果.

     

  • [1] 邹广平, 张冰, 唱忠良 等. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报, 2018,50(5):1125-1134
    [1] ( Zou Guangping, Zhang Bing, Chang Zhongliang , et al. Hysteresis mechanical model and experimental study of spring metal-net rubber combination damper. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1125-1134(in Chinese))
    [2] 黄小双, 彭雄奇, 张必超 . 帘线/橡胶复合材料各向异性黏-超弹性本构模型. 力学学报, 2016,48(1):140-145
    [2] ( Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao . An anisotropic visco-hyperelastic constitution model for cord-rubber composites. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1):140-145(in Chinese))
    [3] 谈炳东, 许进升, 孙朝翔 等. 短纤维增强三元乙丙橡胶横观各向同性黏-超弹性本构模型, 力学学报, 2017,49(3):677-684
    [3] ( Tan Bingdong, Xu Jinsheng, Sun Chaoxiang , et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber feinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):677-684 (in Chinese))
    [4] Mooney M . A theory of large elastic deformation. Journal of Applied Physics, 1940,11(9):582-592
    [5] Treloar LRG . The elasticity of a network of long-chain molecules-I. Transactions of the Faraday Society, 1943,39:36-41
    [6] Rivlin RS . Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London,Series A, Mathematical and Physical Sciences, 1948,241(835):379-397
    [7] Ogden RW . Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1972,326(1567):565-584
    [8] Yeoh OH . Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993,66(5):754-771
    [9] Gent AN . A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996,69(1):59-61
    [10] Shariff MHBM . Strain energy function for filled and unfilled rubber like material. Rubber Chemistry and Technology, 2000,73(1):1-18
    [11] Carroll MM . A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011,103(2):173-187
    [12] Mansouri MR, Darijani HD . Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures, 2014,51:4316-4326
    [13] Arruda EM, Boyce MC . A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412
    [14] Kaliske M, Heinrich G . An extended tube-model for rubber elasticity: statistical mechanical theory and finite element implementation. Rubber Chemistry and Technology, 1999,72(4):602-632
    [15] Miehe C, G?ktepe S . A micro-macro approach to rubber-like materials. PartII: themicro spheremodel of finiterubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 2005,53(10):2231-2258
    [16] Drozdov AD, de Claville Christiansen J . Constitutive equations for the nonlinear elastic response of rubbers. Acta Mechanica, 2006,185(1-2):31-65
    [17] Kroon M . An 8-chain model for rubber-likematerials accounting for non-affinechain deformations and topological constraints. Journal of Elasticity, 2011,102(2):99-116
    [18] Davidson JD, Goulbourne NC . A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013,61:1784-1797
    [19] Vu Ngoc Khiêm, Mikhail Itskov . Analytical network-averaging of the tube model: Rubber elasticity. Journal of the Mechanics and Physics of Solids, 2016,95:254-269
    [20] Zhou J, Jiang L, Khayat RE . A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity. Journal of the Mechanics and Physics of Solids, 2018,110:137-154
    [21] Nishi K, Fujii K, Chung U , et al. Experimental observation of two features unexpected from the classical theories of rubber elasticity. Physical Review Letters, 2017, 119: 267801-1-5
    [22] Steinmann P, Hossain M, Possart G . Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar's data. Archive of Applied Mechanics, 2012,82(9):1183-1217
    [23] Rickard OHW, Kari L . An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications. Polymer Testing, 2015,41:44-54
    [24] Ogden RW . Non-Linear Elastic Deformations. New York: Dover Publications, 1997
    [25] Treloar LRG . Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 1944,40:59-70
    [26] 丁智平, 杨荣华, 黄友剑 等. 基于连续损伤模型橡胶弹性减振元件疲劳寿命分析. 机械工程学报, 2014,50(10):80-86
    [26] ( Ding Zhiping, Yang Ronghua, Huang Youjian , et al. Fatigue life analysis of rubber vibration damper based on continnum damage model. Journal of Mechanical Engineering, 2014,50(10):80-86 (in Chinese))
    [27] Meunier L, Chagnon G, Favier D , et al. Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polymer Testing, 2008,27(6):765-777
    [28] 赵国营 .天然橡胶材料基础拉伸实验研究 . [硕士论文].青岛:青岛科技大学, 2016年
    [28] ( Zhao Guoying . Study on tensile test of natural rubber material. [Master Thesis]. Qingdao: Qidao University of Science and Technology, 2016 (in Chinese))
    [29] Kawabata S, Matsuda M, Tei K , et al. Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules, 1981,14:154-162
  • 加载中
计量
  • 文章访问数:  1572
  • HTML全文浏览量:  219
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-10
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回