EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性微粒介电泳分离过程的多尺度模拟

蔡文莱 黄亚军 刘伟阳 彭浩宇 黄志刚

蔡文莱, 黄亚军, 刘伟阳, 彭浩宇, 黄志刚. 柔性微粒介电泳分离过程的多尺度模拟[J]. 力学学报, 2019, 51(2): 405-414. doi: 10.6052/0459-1879-18-297
引用本文: 蔡文莱, 黄亚军, 刘伟阳, 彭浩宇, 黄志刚. 柔性微粒介电泳分离过程的多尺度模拟[J]. 力学学报, 2019, 51(2): 405-414. doi: 10.6052/0459-1879-18-297
Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. doi: 10.6052/0459-1879-18-297
Citation: Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. doi: 10.6052/0459-1879-18-297

柔性微粒介电泳分离过程的多尺度模拟

doi: 10.6052/0459-1879-18-297
基金项目: 国家自然科学基金项目(500110046);广东省高等学校高层次人才项目(400140016);佛山市科技创新团队项目(2015IT100162)
详细信息
    作者简介:

    2) 蔡文莱,硕士研究生,主要研究方向:流体与多尺度耦合模拟. E-mail: 965985696@qq.com|3) 黄志刚,教授,主要研究方向: 微观与多尺度仿真中的数值方法及其在微纳工程领域的应用研究. E-mail: huangzg@gdut.edu.cn

  • 中图分类号: Q81

MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE

  • 摘要: 介电泳分离是一种高效的微细颗粒分离技术,利用非均匀电场极化并操纵分离微流道中的颗粒. 柔性微粒在介电泳分离过程中同时受多种物理场、多相流和微粒变形等复杂因素的影响,仅用单一的计算方法对其进行模拟存在一定的难度,本文采用有限单元——格子玻尔兹曼耦合计算的方法处理这一难题.介观尺度的格子玻尔兹曼方法将流体看成由大量微小粒子组成,在离散格子上求解玻尔兹曼输运方程,易于处理多相流及大变形问题,特别适合模拟柔性颗粒在介电泳分离过程中的变形情况.另一方面,介电泳分离过程的模拟需求解流体、电场和微粒运动方程,计算量相当庞大,通过有限单元法求解介电泳力,提高计算效率.利用这种多尺度耦合计算方法,对一款现有的介电泳芯片分离过程进行了模拟.分析了微粒在电场作用下产生的介电泳力,揭示了介电泳力与电场变化率等因素之间的关系.对微粒运动轨迹及其变形的情况进行了研究,发现微粒的变形主要与流体剪切作用有关.这种多尺度耦合计算方法,为复杂微流体的计算提供了一种有效的解决方案.

     

  • [1] 姚梦迪, 吕雪飞, 邓玉林 . 基于微流控芯片的核酸检测技术. 生命科学仪器, 2017,15(4):22-28
    [1] ( Yao Mengdi, Lü Xuefei, Deng Yulin . Nucleic acid detection techniques based on microfluidic chip. Life Science Instruments, 2017,15(4):22-28 (in Chinese))
    [2] 孙克 . 微流控芯片技术在生命科学领域的研究进展. 当代医学, 2009,15(16):20-21
    [2] ( Sun Ke . Research progress of microfluidic chip technology in the field of life science. Contemporary Medicine, 2009,15(16):20-21(in Chinese))
    [3] 戴小珍, 蔡绍皙, 蒋稼欢 等. 微流控技术对细胞微环境的模拟及应用研究. 生物物理学报, 2010,26(3):209-215
    [3] ( Dai Xiaozhen, Cai Shaoxi, Jiang Jiahuan , et al. Simulation and application of microfluidic technology to cell microenvironment. Acta Biophysica Sinica, 2010,26(3):209-215 (in Chinese))
    [4] Arosio P, Muller T, Mahadevan L , et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett, 2014,14(5):2365-2371
    [5] 曾一笑, 樊磊, 吴菲 等. 基于介电电泳的粒子分离微流控芯片的研究. 仪表技术与传感器, 2017(2):5-8
    [5] ( Zeng Yixiao, Fan Lei, Wu Fei , et al. Study on particle separation of microfluidic chip based on dielectrophoresis. Instrument Technique & Sensor, 2017 ( 2):5-8 (in Chinese))
    [6] 董盛华, 张晶, 葛胜祥 . 微流控芯片细胞捕获分离方法概述. 生物化学与生物物理进展, 2016,43(11):1102-1110
    [6] ( Dong Shenghua, Zhang Jing, Ge Shengxiang . Microfluidic chips for cell capturing and separation. Progress in Biochemistry and Biophysics, 2016,43(11):1102-1110 (in Chinese))
    [7] Sun J, Gao Y, Isaacs RJ , et al. Simultaneous on-chip DC dielectrophoretic cell separation and quantitative separation performance characterization. Anal Chem, 2012,84(4):2017-2024
    [8] Song Y, Yang J, Shi X , et al. DC dielectrophoresis separation of marine algae and particles in a microfluidic chip. Science China Chemistry, 2012,55(4):524-530
    [9] 陶冶 . 基于液滴微流控的病毒颗粒检测与分离关键技术研究. [博士论文]. 哈尔滨:哈尔滨工业大学, 2016
    [9] ( Tao Ye . Reseatch on key Technologies of virus particle detection and sorting using drop-based microfluidics. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    [10] Pohl HA, Crane JS . Dielectrophoresis of cells. Biophysical Journal, 1972,11(9):606-611
    [11] 吴菲, 樊磊, 曾一笑 等. 基于介电泳原理的三明治式微流控芯片. 微纳电子技术, 2018(2):116-121
    [11] ( Wu Fei, Fan Lei, Zeng Yixiao , et al. Sandwiched microfluidic chip based on the principle of dielectrophoresis. Micronanoelectronic Technology, 2018(2):116-121 (in Chinese))
    [12] 王兆伟, 武晓刚, 陈魁俊 等. 一种力——电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137
    [12] ( Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):124-137 (in Chinese))
    [13] Girimaji S . Lattice Boltzmann method: Fundamentals and engineering applications with computer codes. AIAA Journal, 2011,51(4):398-404
    [14] Aldaeus F, Lin Y, Amberg G , et al. Multi-step dielectrophoresis for separation of particles. Journal of Chromatography A, 2006,1131(1-2):261
    [15] Piacentini N, Mernier G, Tornay R , et al. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics, 2011,5(3):427
    [16] Spelt JK, Absolom DR, Zingg W , et al. Determination of the surface tension of biological cells using the freezing front technique. Cell Biophysics, 1982,4(2-3):117-131
    [17] Ai Y, Park S, Zhu J , et al. DC electrokinetic particle transport in an L-shaped microchannel. Langmuir the Acs Journal of Surfaces & Colloids, 2010,26(4):2937-2944
    [18] 陈琰, 安立宝 . 微粒受介电泳力作用运动的仿真研究. 固体电子学研究与进展, 2015(1):25-30
    [18] ( Chen Yan, An Libao . Simulation of particle motion caused by dielectrophoretic force, Research & Progress of SSE, 2015(1):25-30 (in Chinese))
    [19] 曾议, 孙友文 . 一种微流控系统仿真的新方法. 高校化学工程学报, 2014(3):641-647
    [19] ( Zeng Yi, Sun Youwen . A new simulation method for microfluidic systems. Journal of Chemical Engineering of Chinese Universities, 2014(3):641-647 (in Chinese))
    [20] 王伟 . 基于介电泳的船舶压载水中微藻分离芯片研究. [硕士论文]. 大连: 大连海事大学, 2018
    [20] ( Wang Wei . Study on microalgae separation chip in ship ballast water based on dielectrophoresis. [Master Thesis]. Dalian: Dalian Maritime University, 2018 (in Chinese))
    [21] And SJM, Berendsen HJC . Permeation Process of small molecules across lipid membranes studied by molecular dynamics simulations. Journal of Physical Chemistry, 2017,100(41):16729-16738
    [22] 曹了然, 张春煜, 张鼎林 等. 分子动力学模拟技术在生物分子研究中的进展. 物理化学学报, 2017,33(7):1354-1365
    [22] ( Cao Liaoran, Zhang Chunyu, Zhang Dinglin , et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules. Acta Physico-Chimica Sinica, 2017,33(7):1354-1365 (in Chinese))
    [23] Phanich J, Threeracheep S, Kungwan N , et al. Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2018: 1-34
    [24] Sheikholeslami M . Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. Journal of Molecular Liquids, 2017,231:555-565
    [25] Mohamad AA . Lattice Boltzmann Method. London: Springer, 2011
    [26] Zhang P, Gao C, Zhang N , et al. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cellular & Molecular Bioengineering, 2014,7(4):552-574
    [27] 王永雷, 李占伟, 刘鸿 等. 耗散微粒动力学模拟方法在软物质体系研究中的一些进展与应用. 物理学进展, 2011,31(1):1-21
    [27] ( Wang Yonglei, Li Zhanwei, Liu Hong , et al. Progress and applications of dissipative particle dynamics simulation method in soft matters. Progress in Physics, 2011,31(1):1-21 (in Chinese))
    [28] 陈君, 彭晓峰 . 微颗粒布朗运动的LBM数值模拟//中国工程热物理学会2004年传热传质学学术会议论文集(上册). 北京, 2004: 556-559
    [28] ( Chen Jun, Peng Xiaofeng . Numerical simulation of brownian motion of microparticles by LBM//Chinese Society of Engineering Thermophysics Proceedings of 2004 Academic Conference on heat and mass transfer (Vol.1). Beijing, 2004: 556-559 (in Chinese))
    [29] Fu Y, Bai L, Zhao S , et al. Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method. Chemical Engineering Science, 2018,181:79-89
    [30] Leu TS, Weng CY . Studies of particle levitation in a dielectrophoretic field-flow fraction-based microsorter. Journal of Micro/Nanolithography Mems & Moems, 2009,8(2):75-78
    [31] 李钰航 . 介电液体中多种电荷输运的格子-Boltzmann模拟及传热分析. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2017
    [31] ( Li Yuhang . Lattice Boltzmann simulation of multi-charge transprotation in dielectric fluide and heat transfer analysis. [Master Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [32] Chen L, Zheng XL, Ning HU , et al. Research progress on microfluidic chip of cell separation based on dielectrophoresis. Chinese Journal of Analytical Chemistry, 2015,43(2):300-309
    [33] Ai Y, Park S, Zhu J , et al. DC electrokinetic particle transport in an L-shaped microchannel. Langmuir the Acs Journal of Surfaces & Colloids, 2010,26(4):2937-2944
    [34] Pethig R . Review article-dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 2010,4(2):022811
    [35] 段欣悦 . 格子玻尔兹曼方法的理论研究与应用. [硕士论文]. 青岛:中国石油大学(华东), 2006
    [35] ( Duan Xinyue . Theory study and application of Lattice-Boltzmann Method. [Master Thesis]. Qingdao: China University of Petroleum, 2006 (in Chinese))
    [36] 郭照立, 郑楚光 . 格子Boltzmann方法的原理及应用. 北京: 科学出版社, 2009
    [36] ( Guo Zhaoli, Zheng Chuguang. Principle and application of lattice Boltzmann method. Beijing: Science Press, 2009 (in Chinese))
    [37] Hardy J, Pomeau Y, Pazzis OD . Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics, 1973,14(12):1746-1759
    [38] Frisch U, Hasslacher B, Pomeau Y . Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters, 1986,56(14):1505-1508
    [39] Frisch U, D'Hμmieres D,Hasslacher B ,et al.Lattice gas hydmdynamics in two and three dimensions. Complex Systems, 1987,1:649-707
    [40] Mcnamara GR, Zanetti G . Use of the Boltzmann equation to simulate lattice gas automata. Physical Review Letters, 1988,61(20):2332
    [41] Frisch. U, Hasslacher B, Pomeau Y . Lattice-gas automata for the NavierStokes equation. Physical Review Letters, 1986,6(14):1505-1508
    [42] McNamara GR, Zanetti G . Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 1988,61(20):2332-2335
    [43] Succi S. The Lattice Boltzmann Equation-For Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001
    [44] 李彦浩, 程永光 . 用多松弛格子Boltzmann方法模拟三维水击波. 武汉大学学报(工学版), 2013,46(4):417-422
    [44] ( Li Yanhao, Chen Yongguang . Three-dimensional simulation of water hammer wave by multiple-relaxtion-time lattice Boltzmann method. Engineering Journal of Wuhan University, 2013,46(4):417-422 (in Chinese))
    [45] Zhou T, Li XM, Liu F . MRT-LBM analysis of acoustic streaming in standing waves between two-dimensional flat plates. Journal of Computational Physics, 2018,35(1):39-46
    [46] Guo ZL, Shu C . Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, 2013
    [47] 张培杰, 林建忠 . 非牛顿流体固粒悬浮流的若干问题. 力学学报, 2017,49(3):543-549
    [47] ( Zhang Peijie, Lin Jianzhong . Review of some researches on suspension of solid particle in non-newtonian fluid. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):543-549 (in Chinese))
    [48] 陈荣前, 聂德明 . 椭圆颗粒在剪切流中旋转特性的数值研究. 力学学报, 2017,49(2):257-267
    [48] ( Chen Rongqian, Nie Deming . Numerical study on the rotation of elliptical particle in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):257-267 (in Chinese))
    [49] Merle CP, Davide CW. Mechanics of fluids (3rd ed). Beijing: China Machine Press, 2003
    [50] Danial NN, Korsmeyer SJ . Cell death: Critical control points. Cell, 2004,116(2):205-219
    [51] 郭超凡, 王云阳 . 蛋白质物理改性的研究进展. 食品安全质量检测学报, 2017,8(2):428-433
    [51] ( Guo Chaofan, Wang Yunyang . Research progress on physical modification methods of protein. Journal of Food Safety and Quality, 2017,8(2):428-433 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1455
  • HTML全文浏览量:  149
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-10
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回