EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直振动管中颗粒毛细效应的离散元模拟

凡凤仙 王志强 刘举 张华腾

凡凤仙, 王志强, 刘举, 张华腾. 竖直振动管中颗粒毛细效应的离散元模拟[J]. 力学学报, 2019, 51(2): 415-424. doi: 10.6052/0459-1879-18-262
引用本文: 凡凤仙, 王志强, 刘举, 张华腾. 竖直振动管中颗粒毛细效应的离散元模拟[J]. 力学学报, 2019, 51(2): 415-424. doi: 10.6052/0459-1879-18-262
Fengxian Fan, Zhiqiang Wang, Ju Liu, Huateng Zhang. DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424. doi: 10.6052/0459-1879-18-262
Citation: Fengxian Fan, Zhiqiang Wang, Ju Liu, Huateng Zhang. DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424. doi: 10.6052/0459-1879-18-262

竖直振动管中颗粒毛细效应的离散元模拟

doi: 10.6052/0459-1879-18-262
基金项目: 国家自然科学基金资助项目(51206113);国家自然科学基金资助项目(51776129);国家自然科学基金资助项目(51576130)
详细信息
    作者简介:

    2) 凡凤仙,副教授,主要研究方向:流体力学与颗粒动力学. E-mail: fanfengxian@usst.edu.cn

  • 中图分类号: O35

DEM SIMULATION OF GRANULAR CAPILLARITY IN VERTICALLY VIBRITING TUBE

  • 摘要: 将一根细管插入填充有颗粒的静止容器中并对管施加竖直振动,颗粒将在管内发生上升运动,并最终稳定在一定高度,这一现象与液体毛细效应类似,被称为颗粒毛细效应.为探究颗粒毛细效应过程中伴随的颗粒尺度动力学行为及机理,基于离散元方法建立颗粒运动模型,对颗粒毛细效应动力学过程和特性开展数值模拟研究.模拟再现了文献中实验得到的颗粒毛细效应全过程,给出了管内颗粒柱高度随时间的演变规律,结果表明,受到颗粒系统参数的影响,本模拟条件下颗粒毛细效应过程呈现单周期上升、倍周期上升和倍周期稳定三个阶段,在倍周期上升阶段颗粒柱上升速度逐渐减小,平缓过渡到稳定阶段.在此基础上,分析了管内颗粒速度场和填充率分布随时间的演变特性,揭示了颗粒毛细效应过程中由容器传输到管内的颗粒的占比分布.研究发现,管内不同高度位置颗粒的运动并不同步,随着管的振动,管内出现速度波,速度波的传播引起管内颗粒出现膨胀和压缩交替的情况,从而管内颗粒填充率随时间发生周期性波动;在上升阶段,越接近管壁由容器传输到管内的颗粒占比越大,在稳定阶段,管内上层颗粒的对流引起容器传输到管内的颗粒占比发生反转.

     

  • [1] Van Gerner HJ, Van Der Hoef MA, Van Der Meer D , et al. Interplay of air and sand: Faraday heaping unravelled. Physical Review E, 2007,76(1):051305
    [2] Yamada TM, Katsuragi H . Scaling of convective velocity in a vertically vibrated granular bed. Planetary and Space Science, 2014,100:79-86
    [3] Liao CC, Hsiau SS . Transport properties and segregation phenomena in vibrating granular beds. KONA Powder and Particle Journal, 2016,2016(33):109-126
    [4] Darias JR, Sánchez I, Gutiérrez G , et al. Study of the accumulation of grains in a two dimensional vibrated U-tube without interstitial fluid. Advanced Powder Technology, 2013,24(6):1095-1099
    [5] Sánchez I, Díaz AA, Guerrero B , et al. Improved model for the U-tube granular instability: Analytical solution and delayed coupling. Mechanics Research Communications, 2015,67:1-7
    [6] Clement CP, Pacheco-Martinez HA, Swift MR , et al. Partition instability in water-immersed granular systems. Physical Review E, 2009,80(1):011311
    [7] Liu CP, Wu P, Wang L . Particle climbing along a vibrating tube: A vibrating tube that acts as a pump for lifting granular materials from a silo. Soft Matter, 2013,9(19):4762-4766
    [8] Liu CP, Zhang FW, Wu P , et al. Effect of hoisting tube shape on particle climbing. Powder Technology, 2014,259:137-143
    [9] 张富翁, 王立, 刘传平 等. 竖直振动管中颗粒的上升运动. 物理学报, 2014,63(1):014501
    [9] ( Zhang Fuweng, Wang Li, Liu Chuanping , et al. The rising motion of grains in a vibrating pipe. Acta Physica Sinica, 2014,63(1):014501 (in Chinese))
    [10] Fan F, Liu J, Parteli EJR , et al. Origin of granular capillarity revealed by particle-based simulations. Physical Review Letters, 2017,118(21):218001
    [11] Fan F, Parteli EJR, P?schel T . Vertical motion of particles in vibration-induced granular capillarity. EPJ Web of Conferences, 2017,140:16008
    [12] 刘举, 白鹏博, 凡凤仙 等. 竖直振动下颗粒物质的行为模式研究进展. 化工进展, 2016,35(7):1956-1962
    [12] ( Liu Ju, Bai Pengbo, Fan Fengxian , et al. Research progress on behavior mode of granular matter under vertical vibration. Chemical Industry & Engineering Progress, 2016,35(7):1956-1962 (in Chinese))
    [13] Shukla P, Ansari IH, Van Der Meer D , et al. Nonlinear instability and convection in a vertically vibrated granular bed. Journal of Fluid Mechanics, 2014,761:123-167
    [14] Zhang F, Wang L, Liu C , et al. Patterns of convective flow in a vertically vibrated granular bed. Physics Letters A, 2014,378(18-19):1303-1308
    [15] Zhang K, Chen T, He L . Damping behaviors of granular particles in a vertically vibrated closed container. Powder Technology, 2017,321:173-179
    [16] Liu Y, Zhao JH . Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe. Chinese Physics B, 2015,24(3):034502
    [17] Xu Y, Musser J, Li T , et al. Particles climbing along a vertically vibrating tube: Numerical simulation using the discrete element method (DEM). Powder Technology, 2017,320:304-312
    [18] Zhang F, Cronin K, Lin Y , et al. Effects of vibration parameters and pipe insertion depth on the motion of particles induced by vertical vibration. Powder Technology, 2018,333:421-428
    [19] 谭援强, 肖湘武, 张江涛 等. 尼龙粉末在SLS预热温度下的离散元模型参数确定及其流动特性分析. 力学学报, 2019,51(1):56-63
    [19] ( Tan Yuanqiang, Xiao Xiangwu, Zhang Jiangtao , et al. Determination of discrete element model contact parameters of nylon powder at SLS preheating temperature and its flow characteristics. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):56-63 (in Chinese))
    [20] 钱劲松, 陈康为, 张磊 . 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018,50(5):1041-1050
    [20] ( Qian Jinsong, Chen Kangwei, Zhang Lei . Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1041-1050 (in Chinese))
    [21] 熊迅, 李天密, 马棋棋 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报, 2018,50(3):622-632
    [21] ( Xiong Xun, Li Tianmi, Ma Qiqi , et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):622-632 (in Chinese))
    [22] Brilliantov NV, Spahn F, Hertzsch JM , et al. Model for collisions in granular gases. Physical Review E, 1996,53(1):5382-5392
    [23] Müller P, P?schel T . Collision of viscoelastic spheres: Compact expressions for the coefficient of normal restitution. Physical Review E, 2011,84(2):021302
    [24] Cundall PA, Strack OD . A discrete numerical model for granular assemblies. Géotechnique, 1979,29(1):47-65
    [25] Rycroft CH, Orpe AV, Arshad K . Physical test of a particle simulation model in a sheared granular system. Physical Review E, 2009,80(3):031305
    [26] Parteli EJR, Schmidt J, Blümel C , et al. Attractive particle interaction forces and packing density of fine glass powders. Scientific Reports, 2014,4:6227
    [27] Ai J, Chen JF, Rotter JM , et al. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011,206(3):269-282
    [28] Sch?fer J, Dippel S, Wolf DE . Force schemes in simulations of granular materials. Journal de Physique I France, 1996,6(1):5-20
    [29] 赵永志, 程易, 郑津洋 . 三方程线性弹性——阻尼DEM模型及碰撞参数确定. 计算力学学报, 2009,26(2):239-244
    [29] ( Zhao Yongzhi, Cheng Yi, Zheng Jinyang . Three-equation linear spring-dashpot DEM model and the determination of contact parameters. Chinese Journal of Computational Mechanics, 2009,26(2):239-244 (in Chinese))
    [30] Ng TT, Zhou W, Ma G , et al. Damping and particle mass in DEM simulations under gravity. Journal of Engineering Mechanics, 2015,141(6):04014167
    [31] Kloss C, Goniva C, Hager A , et al. Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 2012,12(2-3):140-152
  • 加载中
计量
  • 文章访问数:  1558
  • HTML全文浏览量:  385
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-06
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回