EI、Scopus 收录
中文核心期刊

空化可压缩流动空穴溃灭激波特性研究

王畅畅, 王国玉, 黄彪

王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究[J]. 力学学报, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215
引用本文: 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究[J]. 力学学报, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215
Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215
Citation: Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215
王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究[J]. 力学学报, 2018, 50(5): 990-1002. CSTR: 32045.14.0459-1879-18-215
引用本文: 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究[J]. 力学学报, 2018, 50(5): 990-1002. CSTR: 32045.14.0459-1879-18-215
Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. CSTR: 32045.14.0459-1879-18-215
Citation: Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. CSTR: 32045.14.0459-1879-18-215

空化可压缩流动空穴溃灭激波特性研究

基金项目: 1)国家自然科学基金(91752105,51679005),北京市自然科学基金(3172029) 和北京理工大学研究生科技创新活动专项计划(2017CX10017) 资助项目.
详细信息
    作者简介:

    2)黄彪,副教授,主要研究方向:高速水动力学.E-mail:huangbiao@bit.edu.cn

    通讯作者:

    黄彪

  • 中图分类号: O352;

NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS

  • 摘要: 为深入研究空化可压缩流动中空泡/空泡团溃灭过程中激波产生、传播及其与空穴相互作用规律,本文采用数值模拟方法对空化可压缩流动空穴溃灭激波特性展开了研究.数值计算基于OpenFOAM开源程序,综合考虑蒸汽相和液相的压缩性,通过在原无相变两相可压缩求解器的控制方程中耦合模拟空化汽液相间质量交换的源项,实现了对空化流动的非定常可压缩计算.利用上述考虑汽/液相可压缩性的空化流动求解器,对周期性云状空化流动进行了数值模拟,并重点研究了空穴溃灭激波特性.结果表明:上述数值计算方法可以准确捕捉到空穴非定常演化过程及大尺度脱落空泡云团溃灭激波现象,大尺度脱落空泡云团溃灭过程分为3个阶段:(1) U型空泡团形成; (2) U型空泡团头部溃灭; (3) U型空泡团腿部溃灭.在U 型空泡团腿部溃灭瞬间,观察到激波产生,并向上游和下游传播,向上游传播的激波与空穴相互作用,导致水翼吸力面新生的附着型片状空穴回缩,直至完全溃灭.并且空穴溃灭激波存在回弹现象, 抑制了下一周期的空化发展.
    Abstract: To investigate the cloud cavity collapse induced shock wave dynamics in unsteady cavitating flows,especially the shock wave formation,propagation,and the interaction between shock wave and cavity,numerical simulation is conducted to study the shock wave dynamics dominated unsteady cloud cavitating flows.The numerical method is achieved by implementing phase change model into the native pressure-based compressible two-phase flow solver,based on the open source software OpenFOAM,considering the compressibility of both liquid and vapor.The numerical results are presented for the typical shock wave dominated unsteady partial cavitating flow,characterized by low Strouhal number around a NACA66 hydrofoil at $\alpha=6$°and $\sigma=1.25$.The results show that the predicted unsteady cavity behaviors agree well with the experiments,especially the large scale cloud cavity collapse induced shock wave phenomena.The large scale cloud cavity collapse process can be depicted into three stages:(1) the formation of U-shape cloud cavity; (2) the collapse of U-shape cloud cavity head; (3) the collapse of U-shape cloud cavity legs.The shock wave is generated and emitted during the third stage and will propagate both upstream and downstream.When the shock wave propagates to the new attached cavity sheet,it will cause the attached cavity sheet collapse,and with the shock wave propagation within the cavity sheet,the attached cavity sheet is shorten until totally collapsed.Following,the shock wave rebound phenomena occurs.The shock wave propagation and rebound are responsible for the increase in cavity evolution cycle and thus the low cavitation Strouhal number.The shock wave dynamics analysis shows that the flow parameters across the shock wave front during the interaction between shock wave and cavity satisfies the 1-D shock wave relationship.
  • [1] Joseph DD.Cavitation in a flowing liquid.Physical Review E,1995,51(3):1649-1650
    [2] Brennen CE.Fundamentals of Multiphase Flow.Cambridge:Cambridge University Press,2005
    [3] Wang G,Senocak I,Shyy W,et al.Dynamics of attached turbulent cavitating flows.Progress in Aerospace Sciences,2001,37(6):551-581
    [4] Wang C,Wang G,Zhang M,et al.Numerical simulation of ultra-high speed supercavitating flows considering the effects of the water compressibility,Ocean Engineering,2017,142:532-540
    [5] Reisman GE,Wang Y.Brennen CE.Observations of shock waves in cloud cavitation.Journal of Fluid Mechanics,1998,355:255-283
    [6] Leroux JB,Astolfi JA,Billard JY.An experimental study of unsteady partial cavitation.Journal of Fluids Engineering,2004,126(1):94-101
    [7] Budich B,Schmidt SJ,Adams NA.Numerical simulation and analysis of condensation shocks in cavitating flow.Journal of Fluid Mechanics,2018,838:759-813
    [8] Wang C,Huang B,Wang G,et al.Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation.International Journal of Heat and Mass Transfer,2017,114:769-785
    [9] 王畅畅,黄彪,王国玉等.附着型空穴断裂及脱落机制的实验研究.工程力学,2017,34(10):249-256
    [9] (Wang Changchang,Huang Biao,Wang Guoyu,et al.Experimental investigation on the breakup and shedding mechanisms of unsteady attached cavitating flows.Engineering Mechanics,2017,34(10):249-256(in Chinese))
    [10] Zhang W,Bai XD,Ma Z,et al.Compressible effect on the cavitating flow:A numeric study.Journal of Hydrodynami cs,2017,29(6):1089-1092
    [11] Wang C, Huang B, Wang G, et al.Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility. Journal of Hydrodynamics 2018, doi:10.1007/s42241-018-0058-x
    [12] Wang C, Wu Q, Huang B, et al.Numerical simulation of cavitation vortex dynamics in unsteady cavitating flow with shock wave propagation. Ocean Engineering, 2018, 156: 424-434
    [13] 高远,黄彪,吴钦等.绕水翼空化流动及振动特性的实验研究.力学学报,2015,47(6):1009-1016
    [13] (Gao Yuan, Huang Biao,Wu Qin,et al.Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow.Chinese Journal of Theoretical and Applied Mechanics,2015,47(6):1009-1016(in Chinese))
    [14] 顾巍,何有声,胡天群.轴对称体空泡流的噪声特性与空泡界面瞬态特征.上海交通大学学报,2000,34(8):1026-1030
    [14] (Gu Wei,He Yousheng,Hu Tianqun.Noise feature of cavitation flows on axisymmetric bodies and transient characteristics of cavity interface.Journal of Shanghai Jiao Tong University,2000,34(8):1026-1030(in Chinese))
    [15] 王一伟,黄晨光,吴小翠等.航行体水下垂直发射空泡脱落条件研究.工程力学,2015,32(11):3-39
    [15] (Wang Yiwei,Huang Chenguang,Wu Xiaocui,et al.Investigation of cavities shedding condition on underwater vehicles in the vertical launch process.Engineering Mechanics,2015,32(11):3-39(in Chinese))
    [16] 杜特专,王一伟,黄晨光等.航行体水下发射流固耦合效应分析.力学学报,2017,49(4):782-792
    [16] (Du Tezhuan,Wang Yiwei,Huang Chenguang,et al.Study of coupling effects of underwater launched vehicle.Chinese Journal of Theoretical and Applied Mechanics,2017,49(4):782-792(in Chinese))
    [17] Prosperetti A.The equation of bubble dynamics in a compressible liquid.Physics of Fluids,1987,30(11):3626-3628
    [18] 吕明,宁智,孙春华.单液滴内空化气泡的生长及溃灭研究.力学学报,2016,48(4):857-866
    [18] (Lü Ming,Ning Zhi,Sun Chunhua.Study of the growth and collapse of cavitation bubble within a droplet.Chinese Journal of Theoretical and Applied Mechanics,2016,48(4):857-866)
    [19] Prosperetti A.The speed of sound in a gas-vapour bubbly liquid.Interface Focus,2015,5(5):20150024
    [20] 林孟达,崔桂香,张兆顺等.飞机尾涡演变及快速预测的大涡模拟研究.力学学报,2017,49(6):1185-1200
    [20] (Lin Mengda, Cui Guixiang, Zhang Zhaoshun,et al.Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices.Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):857-866(in Chinese))
    [21] Shamsborhan H,Coutier-Delgosha O,Caignaert G,et al,Experimental determination of the speed of sound in cavitating flows,Experiments in Fluids,2010,49(6):1359-1373
    [22] Ganesh H,Mäkiharju SA,Ceccio SL.Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities.Journal of Fluid Mechanics,2016,802:37-78
    [23] Ganesh H,Mäkiharju SA,Ceccio SL.Bubbly shock propagation as s mechanism of shedding in separated cavitating flows.Journal of Hydrodynamics Ser.B,2017,29(6):907-916
    [24] Long X, Cheng H, Ji B, et al.Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. International Journal of Multiphase Flow, 2018, 100: 41-56
    [25] Ji B, Long Y, Long X, et al.Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. Journal of Hydrodynamics, 2017, 29(1):27-39
    [26] Long Y, Long X, Ji B, et al.Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil. Journal of Hydrodynamics, 2017, 29(4):610-620
    [27] Kunz RF,Boger DA,Stinebring DR,et al.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction.Computers and Fluids,2000,29:849-875
    [28] Saito Y,Takami R,Nakamori I,et al.Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil.Computational Mechanics,2007,40(1):85-96
    [29] Schnerr GH,Sezal IH,Schmidt SJ,Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock wave dynamics.Physics of Fluids,2008,20(4):040703
    [30] Gnanaskandan A,Mahesh K.Large eddy simulation of the transition from sheet to cloud cavitation over a wedge.International Journal of Multiphase Flow,2016,83:86-102
    [31] Egerer CP,Schmidt SJ,Hickel S,et al.Efficient implicit LES method for the simulation of turbulent cavitating flows.Journal of Computational Physics,2016,316:453-469
    [32] Victor H,Luo X,Xavier E,et al.Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil.Journal of Hydrodynamics,2015,27(6):815-823
    [33] Yu C,Wang Y,Huang C,et al.Large eddy simulation of unsteady cavitating flow around a highly skewed propeller in nonuniform wake.Journal of Fluids Engineering,2017,139(4):041302
    [34] Core RH.Underwater Explosion.Princeton:Princeton Univ.Press,1948
    [35] Sone Y,Sugimoto H,Adiabatic Waves in Liquid-Vapor Systems.Berlin Heidelberg New York:Springer,1990
    [36] Schmidt E,Grigull U.Properties of Water and Stream in SI-Units.Oldenbourg,Berlin:Springer,1980
    [37] Egorov Y,Menter FR.Development and application of SST-SAS Turbulence model in the DESIBER Project.Second Symposium on Hybrid RANS-LES Methods,Corfu,Greece,2007
    [38] Jasak H.Error analysis and estimation for the finite volume method with applications to fluid flows.[Ph~D~Thesis].London Imperial College 1996
    [39] Miller S,Jasak H,Boger D. et al.A pressure-based,compressible,two-phase flow finite volume method for underwater explosions.Computers and Fluids,2013,87:132-143
    [40] Sagaut P.Large Eddy Simulation for Incompressible Flows.New York:Springer,2002
    [41] Ji B,Luo X,Arndt REA,et al.Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil.International Journal of Multiphase Flow,2015,68:121-134
  • 期刊类型引用(12)

    1. 王子豪,孙铁志,张桂勇. 非定常空化涡旋结构演化及压力波机制的研究. 振动与冲击. 2024(02): 22-31+145 . 百度学术
    2. 葛安亮,李延龙,王新宝,江文亮,李相坤. 网衣清洗空化射流喷嘴仿真试验. 渔业现代化. 2022(02): 18-24 . 百度学术
    3. 陈家成,陈泰然,梁文栋,谭树林,耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报. 2022(05): 1242-1256 . 本站查看
    4. 王宁,周领,李赟杰,潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报. 2022(07): 1952-1959 . 本站查看
    5. 程怀玉,季斌,龙新平,槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报. 2021(05): 1268-1287 . 本站查看
    6. 朱兵,杨朴. 水翼多模态的空化结构演化与空腔溃灭压力的耦合特性. 上海大学学报(自然科学版). 2021(04): 611-634 . 百度学术
    7. 邱宁,朱涵,周文杰,潘中永,袁寿其,刘祥. 激波传播与云空化脱落过程脉动冲击研究. 农业机械学报. 2021(11): 135-143 . 百度学术
    8. 王巍,张庆典,唐滔,安昭阳,佟天浩,王晓放. 射流对绕水翼云空化流动抑制机理研究. 力学学报. 2020(01): 12-23 . 本站查看
    9. 谢庆墨,陈亮,张桂勇,孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报. 2020(04): 1045-1054 . 本站查看
    10. 黄彪,黄瀚锐,刘涛涛,张孟杰,王国玉. 通气空泡流动特性研究现状及进展. 空气动力学学报. 2020(04): 724-745 . 百度学术
    11. 王畅畅,王国玉,黄彪,张敏弟. 可压缩空化流动空穴演化及压力脉动特性实验研究. 力学学报. 2019(05): 1296-1309 . 本站查看
    12. 王巍,唐滔,卢盛鹏,张庆典,王晓放. 主动射流控制水翼空化的数值模拟与分析. 力学学报. 2019(06): 1752-1760 . 本站查看

    其他类型引用(18)

计量
  • 文章访问数:  2867
  • HTML全文浏览量:  284
  • PDF下载量:  356
  • 被引次数: 30
出版历程
  • 收稿日期:  2018-07-01
  • 刊出日期:  2018-09-17

目录

    /

    返回文章
    返回