EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格子Boltzmann方法模拟多孔介质惯性流的边界条件改进

程志林 宁正福 曾彦 王庆 隋微波 张文通 叶洪涛 陈志礼

程志林, 宁正福, 曾彦, 王庆, 隋微波, 张文通, 叶洪涛, 陈志礼. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进[J]. 力学学报, 2019, 51(1): 124-134. doi: 10.6052/0459-1879-18-179
引用本文: 程志林, 宁正福, 曾彦, 王庆, 隋微波, 张文通, 叶洪涛, 陈志礼. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进[J]. 力学学报, 2019, 51(1): 124-134. doi: 10.6052/0459-1879-18-179
Cheng Zhilin, Ning Zhengfu, Zeng Yan, Wang Qing, Sui Weibo, Zhang Wentong, Ye Hongtao, Chen Zhili. A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134. doi: 10.6052/0459-1879-18-179
Citation: Cheng Zhilin, Ning Zhengfu, Zeng Yan, Wang Qing, Sui Weibo, Zhang Wentong, Ye Hongtao, Chen Zhili. A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134. doi: 10.6052/0459-1879-18-179

格子Boltzmann方法模拟多孔介质惯性流的边界条件改进

doi: 10.6052/0459-1879-18-179
基金项目: 1) 国家自然科学基金(51504265, 51474222,51474224)和中国石油科技创新基金(2017D-5007-0205)资助项目.
详细信息
    作者简介:

    作者简介: 2) 程志林, 博士研究生, 主要研究方向:多孔介质孔隙尺度流体模拟. E-mail:zhilin_cheng1992@163.com

    通讯作者:

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

    程志林,宁正福,曾彦,王庆,隋微波,张文通,叶洪涛,陈志礼

  • 中图分类号: O351.3;

A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION

  • 摘要: 格子Boltzmann方法可以有效地模拟水动力学问题,边界处理方法的选择对于可靠的模拟计算至关重要.本文基于多松弛时间格子Boltzmann模型开展了不同边界条件下,周期对称性结构和不规则结构中流体流动模拟,阐述了不同边界条件的精度和适用范围. 此外,引入一种混合式边界处理方法来模拟多孔介质惯性流, 结果表明:对于周期性对称结构流动模拟,体力格式边界条件和压力边界处理方法是等效的,两者都能精确地捕捉流体流动特点; 而对于非周期性不规则结构,两种边界处理方法并不等价,体力格式边界条件只适用于周期性结构;由于广义化周期性边界条件忽略了垂直主流方向上流体与固体格点的碰撞作用,同样不适合处理不规则模型;体力-压力混合式边界格式能够用来模拟周期性或非周期性结构流体流动,在模拟多孔介质流体惯性流时,比压力边界条件有更大的应用优势,可以获得更大的雷诺数且能保证计算的准确性.

     

  • [1] 柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516
    [1] (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al.Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese))
    [2] 刘文超, 刘曰武. 低渗透煤层气藏中气-水两相不稳定渗流动态分析. 力学学报, 2017, 49(4): 828-835
    [2] (Liu Wenchao, Liu Yuewu.Dynamic analysis on gas-water two-phase unsteady seepage flow in low-permeable coalbed gas reservoirs. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 828-835 (in Chinese))
    [3] 郑艺君, 李庆祥, 潘明等. 多孔介质壁面剪切湍流速度时空关联的研究. 力学学报, 2016, 48(6): 1308-1318
    [3] (Zheng Yijun, Li Qingxiang, Pan Ming, et al.Space-time correlations of fluctuating veloctuating in porous wall-bounded turbulent shear flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318 (in Chinese))
    [4] Sukop MC, Thorne DT.Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer Publishing Company, Incorporated, 2007
    [5] Krüger T, Kusumaatmaja H, Kuzmin A, et al.The Lattice Boltzmann Method: Principles and Practice. Springer Publishing Company, 2016
    [6] Chen L, Zhang L, Kang Q, et al.Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity. Scientific Reports, 2015, 5: 8089
    [7] Chukwudozie C, Tyagi M.Pore scale inertial flow simulations in 3-D smooth and rough sphere packs using lattice Boltzmann method. AIChE Journal, 2013, 59(12): 4858-4870
    [8] Arabjamaloei R, Ruth D.Numerical study of inertial effects on permeability of porous media utilizing the lattice Boltzmann method. Journal of Natural Gas Science and Engineering, 2017, 44: 22-36
    [9] Kakouei A, Vatani A, Rasaei M, et al.Cessation of Darcy regime in gas flow through porous media using LBM: Comparison of pressure gradient approaches. Journal of Natural Gas Science and Engineering, 2017, 45: 693-705
    [10] Zhao H, Ning Z, Kang Q, et al.Relative permeability of two immiscible fluids flowing through porous media determined by lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2017, 85: 53-61
    [11] Zhao T, Zhao H, Li X, et al.Pore scale characteristics of gas flow in shale matrix determined by the regularized lattice Boltzmann method. Chemical Engineering Science, 2018, 187: 245-255
    [12] Kandhai D, Koponen A, Hoekstra A, et al.Implementation aspects of 3D lattice-BGK: Boundaries, accuracy, and a new fast relaxation method. Journal of Computational Physics, 1999, 150(2): 482-501
    [13] Zhang J, Kwok DY.Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Physical Review E, 2006, 73(4): 047702
    [14] Gräser O, Grimm A.Adaptive generalized periodic boundary conditions for lattice Boltzmann simulations of pressure-driven flows through confined repetitive geometries. Physical Review E, 2010, 82(1): 016702
    [15] Newman MS, Yin X.Lattice Boltzmann simulation of non-Darcy flow in stochastically generated 2D porous media geometries. SPE Journal, 2013, 18(1): 12-26
    [16] Chai Z, Shi B, Lu J, et al.Non-Darcy flow in disordered porous media: A lattice Boltzmann study. Computers & Fluids, 2010, 39(10): 2069-2077
    [17] Sukop MC, Huang H, Alvarez PF, et al.Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods. Water Resources Research, 2013, 49(1): 216-230
    [18] Bhatnagar PL, Gross EP, Krook M.A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511-525
    [19] Humiéres D.Multiple--relaxation--time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences, 2002, 360(1792): 437
    [20] Lallemand P, Luo L-S.Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 2000, 61(6): 6546-6562
    [21] Qian YH, Humiéres DD, Lallemand P.Lattice BGK models for Navier-Stokes equation. EPL Europhysics Letters, 1992, 17(6): 479
    [22] Guo Z, Zheng C, Shi B.Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 2002, 65(4): 046308
    [23] Yu Z, Fan LS.Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 2010, 82(4): 046708
    [24] Huang H, Huang JJ, Lu XY.Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Computers & Fluids, 2014, 93: 164-172
    [25] Guo ZL, Zheng CG, Shi BC.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 2002, 11(4): 366
    [26] Kim S H, Pitsch H.A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry. Physics of Fluids, 2007, 19(10): 108101
    [27] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 239-247
    [27] (Tao Shi, Wang Liang, Guo ZhaoLi. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 239-247 (in Chinese))
    [28] 姚军, 赵建林, 张敏等. 基于格子Boltzmann方法的页岩气微观流动模拟. 石油学报, 2015, 36(10): 1280-1289
    [28] (Yao Jun, Zhao Jianlin, Zhang Min, et al.Microscale shale gas flow simulation based on lattice Boltzmann method. Acta Petrolei Sinica, 2015, 36(10): 1280-1289 (in Chinese))
    [29] Zeng Y, Ning Z, Wang Q, et al.Gas transport in self-affine rough microchannels of shale gas reservoir. Journal of Petroleum Science and Engineering, 2018, 167: 716-728
    [30] Cheng Z, Ning Z, Wang Q, et al.The effect of pore structure on non-Darcy flow in porous media using the lattice Boltzmann method. Journal of Petroleum Science and Engineering, 2019, 172: 391-400
    [31] Guo WB, Wang NC, Shi BC, et al.Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder. Chinese Physics, 2003, 12(1): 67
    [32] Breuer M, Bernsdorf J, Zeiser T, et al.Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow, 2000, 21(2): 186-196
    [33] Mei R, Yu D, Shyy W, et al.Force evaluation in the lattice Boltzmann method involving curved geometry. Physical Review E, 2002, 65(4): 041203
    [34] Lu J, Guo Z, Chai Z, et al.Numerical study on the tortuosity of porous media via lattice Boltzmann method. Communications in Computational Physics, 2009, 6(2): 354-366
    [35] Chukwudozie C, Tyagi M, Sears S, et al.Prediction of non-Darcy coefficients for inertial flows through the castlegate sandstone using image-based modeling. Transport in Porous Media, 2012, 95(3): 563-580
    [36] Guo Z, Zhao T.Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 2002, 66(3): 036304
    [37] Forchheimer P.Wasserbewegung durch boden, Z. Ver. Deutsch, Ing., 1901, 45: 1782-1788
    [38] Ruth D, Ma H.On the derivation of the Forchheimer equation by means of the averaging theorem. Transport in Porous Media, 1992, 7(3): 255-264
    [39] Zeng Z, Grigg R.A criterion for non-Darcy flow in porous media. Transport in Porous Media, 2006, 63(1): 57-69
    [40] Andrade Jr J, Costa U, Almeida M, et al.Inertial effects on fluid flow through disordered porous media. Physical Review Letters, 1999, 82(26): 5249
  • 加载中
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  167
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回