EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后临界湍流区间内旋转薄壳结构振动演化与作用机制实测研究

王浩 柯世堂

王浩, 柯世堂. 后临界湍流区间内旋转薄壳结构振动演化与作用机制实测研究[J]. 力学学报, 2019, 51(1): 111-123. doi: 10.6052/0459-1879-18-125
引用本文: 王浩, 柯世堂. 后临界湍流区间内旋转薄壳结构振动演化与作用机制实测研究[J]. 力学学报, 2019, 51(1): 111-123. doi: 10.6052/0459-1879-18-125
Wang Hao, Ke Shitang. EVOLUTION CHARACTERISTIC AND WORKING MECHANISM ANALYSIS OF ROTATING THIN-WALLED STRUCTURES IN POST-CRITICAL TURBULENT INTERVAL BASED ON FIELD MEASUREMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 111-123. doi: 10.6052/0459-1879-18-125
Citation: Wang Hao, Ke Shitang. EVOLUTION CHARACTERISTIC AND WORKING MECHANISM ANALYSIS OF ROTATING THIN-WALLED STRUCTURES IN POST-CRITICAL TURBULENT INTERVAL BASED ON FIELD MEASUREMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 111-123. doi: 10.6052/0459-1879-18-125

后临界湍流区间内旋转薄壳结构振动演化与作用机制实测研究

doi: 10.6052/0459-1879-18-125
基金项目: 1)国家重点基础研究发展计划(2014CB046200),国家自然科学基金(51878351,51761165022,U1733129),江苏省优秀青年基金(BK20160083),江苏省六大人才高峰高层次人才计划(JZ-026)和江苏省研究生科研与实践创新计划(KYCX18_0244)资助项目.
详细信息
    作者简介:

    作者简介: 2)柯世堂,教授,主要研究方向:风工程与结构工程.E-mail: keshitang@163.com

  • 中图分类号: TU279.7$^+$41;

EVOLUTION CHARACTERISTIC AND WORKING MECHANISM ANALYSIS OF ROTATING THIN-WALLED STRUCTURES IN POST-CRITICAL TURBULENT INTERVAL BASED ON FIELD MEASUREMENT

  • 摘要: 载荷的时变特征可能会对结构振动强度和能量作用机理产生重要影响,火/核电厂最重要的大型建筑结构均为典型的旋转薄壳结构(如冷却塔、烟囱等).为揭示后临界湍流区间内旋转薄壳结构的振动演化特征及其作用机制,实测了后临界雷诺数($Re\ge $3.5$\times $10$^{6}$)条件下8座典型旋转薄壳结构的振动响应.首先,在对实测响应进行降噪滤波处理后进行了不同时距的信号非平稳识别,基于非平稳分析模型对响应的时变均值和极值估计进行研究,并基于多尺度小波变换的演化谱方法开展了响应的频域演变特性研究.在此基础上,探讨了结构风振响应的共振分量占比及其效应,识别了结构的自振频率和阻尼比,并以结构基频为划分依据分别讨论了不同旋转薄壳结构的阻尼作用机制.研究结果表明:(1)旋转薄壳结构在后临界湍流区间内风致振动响应表现为强度非平稳、频率平稳的演化特性;(2)后临界湍流区间内的旋转薄壳结构的风振问题应区分准静力作用点与共振激发点分别进行研究,不同共振激发点的功率谱分布形式较为相近,而准静力作用点的功率谱分布规律差异较大;(3)共振激发点的振动能量分布呈现明显的分段趋势,基于本文大量实测分析结果回归得出适用于共振激发点的三阶段共振谱表达式;(4)借助本文提出的等效阻尼比概念拟合出此类结构的阻尼比预测公式,论证了目前工程中通用的5%阻尼比取值的不合理性.

     

  • [1] Bamu PC, Zingoni A.Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years. Engineering Structures, 2005, 27(12): 1794-1800
    [2] Zdravkovich MM, Bearman PW.Flow around circular cylinders-volume 1: Fundamentals. Journal of Fluids Engineering, 1998, 120(1): 105-106
    [3] Ke ST, Ge YJ.The influence of self-excited forces on wind loads and wind effects for super-large cooling towers. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 132: 125-135
    [4] Sun J, Xu X, Lim CW.Localization of dynamic buckling patterns of cylindrical shells under axial impact. International Journal of Mechanical Sciences, 2013, 66(4): 101-108
    [5] Noh HC.Nonlinear behavior and ultimate load bearing capacity of reinforced concrete natural draught cooling tower shell. Engineering Structures, 2006, 28(3): 399-410
    [6] 柯世堂, 赵林, 葛耀君等. 大型双曲冷却塔气弹模型风洞试验和响应特性. 建筑结构学报, 2010, 31(2): 61-68
    [6] (Ke Shitang, Zhao Lin, Ge Yaojun, et al.Wind tunnel test on aeroelastic model of large hyperbolic cooling towers and features of wind-induced response. Journal of Building Structures, 2010, 31(2): 61-68(in Chinese))
    [7] 周旋, 牛华伟, 陈政清等. 双冷却塔布置与山地环境风干扰作用效应研究. 建筑结构学报, 2014, 35(12): 140-148
    [7] (Zhou Xuan, Niu Huawei, Chen Zhengqing, et al.Study on interference effect of cooling towers under condition of tower-tower and hilly surroundings. Journal of Building Structures, 2014, 35(12): 140-148 (in Chinese))
    [8] 及春宁, 陈威霖, 黄继露等. 串列双圆柱流致振动的数值模拟及其耦合机制. 力学学报, 2014, 46(6): 862-870
    [8] (Ji Chunning, Chen Weiling, Huang Jilu, et al.Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870(in Chinese))
    [9] Chen J, Hui MCH, Xu YL.A Comparative study of stationary and non-stationary wind models using field measurements. Boundary-Layer Meteorology, 2007, 122(1): 105-121
    [10] Tamura Y, Kareem A, Solari G, et al.Aspects of the dynamic wind-induced response of structures and codification. Wind & Structures An International Journal, 2005, 8(4): 251-268
    [11] 程霄翔, 赵林, 葛耀君. 高超临界雷诺数区间内二维圆柱绕流的实测研究. 物理学报, 2016, 65(21): 232-247
    [11] (Chen Xiaoxiang, Zhao Lin, Ge Yaojun.Field measurements on flow past a circular cylinder in transcritical Reynolds number regime. Acta Physica Sinica, 65(21): 232-247(in Chinese))
    [12] Winney PE.The modal properties of model and full scale cooling towers, Journal of Sound & Vibration, 1978, 57(1): 131-148
    [13] Górski P.Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using random decrement method. Engineering Structures, 2015, 83: 30-49
    [14] GB 50009-2012 B 50009-2012. 建筑结构荷载规范. 北京: 中国建筑工业出版社, 2012
    [14] (GB 50009-2012 B 50009-2012. Load code for the design of building structures. Beijing: {China Building Industry Press, 2012(in Chinese))
    [15] Hu L, Xu YL.Extreme value of typhoon-induced non-stationary buffeting response of long-span bridges. Probabilistic Engineering Mechanics, 2014, 36(2): 19-27
    [16] 康厚军, 郭铁丁, 赵跃宇. 大跨度斜拉桥非线性振动模型与理论研究进展. 力学学报, 2016, 48(3): 519-535
    [16] (Kang Houjun, Guo Tieding, Zhao Yueyu.Review on nonlinear vibration and modeling of large span cable-stayed bridge. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535(in Chinese))
    [17] Swartz SE, Chien CC, Hu KK, et al.Tests on microconcrete model of hyperbolic cooling tower. Experimental Mechanics, 1985, 25(1): 12-23
    [18] 王杰方, 安海, 安伟光. 超空泡运动体圆柱薄壳的非线性动力屈曲分析. 力学学报, 2016, 48(1): 181-191
    [18] (Wang Jiefang, An Hai, An Weiguang.The nonlinear dynamic buckling analysis of a thin-walled cylindrical shell of supercavitating vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 181-191(in Chinese))
    [19] 徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827
    [19] (Xu Wanhai, Ma Yexuan, Luo Hao, et al.Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827(in Chinese))
    [20] Watson JN, Addison PS.Spectral-temporal filtering of ndt data using wavelet transform modulus maxima. Mechanics Research Communications, 2002, 29(2-3): 99-106
    [21] Bendat JS, Piersol AG.Random data: Analysis and measurement procedures. IEEE Transactions on Signal Processing, 2010, 58(7): 3938-3945
    [22] Daubechies I.Ten lectures on wavelets. Computers in Physics, 1992, 6(3): 1671-1671
    [23] Failla G, Spanos PD.Evolutionary spectra estimation using wavelets. Journal of Engineering Mechanics, 2004, 130(8): 952-960
    [24] Armitt JW.Wind loading on cooling towers. ASCE Journal of the Structural Division, 1980, 106(3): 623-641
    [25] Ibrahim SR.Random decrement technique for modal identification of structures. Journal of Spacecraft & Rockets, 2012, 14(11): 696
    [26] Kashani H, Nobari AS.Structural nonlinearity identification using perturbed eigen problem and ITD modal analysis method. Applied Mechanics & Materials, 2012, 232: 949-954
    [27] Moncayo H, Marulanda J, Thomson P.Identification and monitoring of modal parameters in aircraft structures using the natural excitation technique (NExT) combined with the eigensystem realization algorithm (ERA). Journal of Aerospace Engineering, 2010, 23(2): 99-104
    [28] Oppenheim AV, Willsky AS, Nawab SH. Signals & Systems (2nd ed.). Prentice-Hall, Inc. 1996
    [29] Kizilkaya A, Kayran AH.ARMA model parameter estimation based on the equivalent MA approach. Digital Signal Processing, 2006, 16(6): 670-681
    [30] Vargas-Loli LM, Fenves GL.Effects of concrete cracking on the earthquake response of gravity dams. Earthquake Engineering & Structural Dynamics, 2010, 18(4): 575-592
  • 加载中
计量
  • 文章访问数:  821
  • HTML全文浏览量:  93
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回