EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑等效曲率的超二次曲面单元非线性接触模型

王嗣强 季顺迎

王嗣强, 季顺迎. 考虑等效曲率的超二次曲面单元非线性接触模型[J]. 力学学报, 2018, 50(5): 1081-1092. doi: 10.6052/0459-1879-18-103
引用本文: 王嗣强, 季顺迎. 考虑等效曲率的超二次曲面单元非线性接触模型[J]. 力学学报, 2018, 50(5): 1081-1092. doi: 10.6052/0459-1879-18-103
Wang Siqiang, Ji Shunying. NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092. doi: 10.6052/0459-1879-18-103
Citation: Wang Siqiang, Ji Shunying. NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092. doi: 10.6052/0459-1879-18-103

考虑等效曲率的超二次曲面单元非线性接触模型

doi: 10.6052/0459-1879-18-103
基金项目: 1) 国家重点研发计划重点专项(2016YCF1401505)和国家自然科学基金项目(11572067, 11772085)资助.
详细信息
    作者简介:

    2) 季顺迎, 教授, 主要研究方向: 颗粒材料计算力学及其工程应用. E-mail: jisy@dlut.edu.cn

    通讯作者:

    季顺迎

  • 中图分类号: O347.7,O373;

NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE

  • 摘要: 基于连续函数包络的超二次曲面单元可有效地描述自然界和工业生产中的非球体颗粒形态, 并通过非线性迭代方法精确计算单元间的接触力. 对于具有复杂几何形态的超二次曲面单元, 线性接触模型不能准确地计算不同接触模式下的作用力. 考虑超二次曲面单元相互作用时不同颗粒形状及表面曲率的影响, 本文发展了相应的非线性黏弹性接触模型. 该模型将不同接触模式下的法向刚度和黏滞力统一表述为单元间局部接触点处等效曲率半径的函数; 切向接触作用则借鉴基于Mohr-Coulomb摩擦定律的球体单元非线性接触模型的计算方法. 为检验超二次曲面单元接触模型的可靠性, 对球形颗粒间的法向碰撞、椭球体颗粒间的斜冲击过程、圆柱体的静态堆积和椭球体的动态卸料过程进行离散元模拟, 并与有限元数值结果及试验结果进行对比验证. 计算表明, 考虑接触点处等效曲率半径的超二次曲面非线性接触模型可准确地计算单元间的接触碰撞作用, 并合理地反映非球形颗粒体系的运动规律. 在此基础上进一步分析了不同长宽比和表面尖锐度对卸料过程中颗粒流动特性的影响, 为非球形颗粒材料的流动特性分析提供了一种有效的离散元方法.

     

  • [1] Cundall PA, Strack ODL.A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
    [2] Zhu HP, Zhou ZY, Yang RY, et al.Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science, 2008, 63(23): 5728-5770
    [3] 孙其诚, 王光谦. 颗粒流动力学及其离散模型评述. 力学进展, 2008, 38(1): 87-100
    [3] (Sun Qicheng, Wang Guangqian.Review on granular flow dynamics and its discrete element method. Advances in Mechanics, 2008, 38(1): 87-100 (in Chinese))
    [4] 孙其诚, 刘晓星, 张国华等. 密集颗粒物质的介观结构. 力学进展, 2017, 47(1): 263-308
    [4] (Sun Qicheng, Liu Xiaoxing, Zhang Guohua, et al.The mesoscopic structures of dense granular materials. Advances in Mechanics, 2017, 47(1): 263-308 (in Chinese))
    [5] 季顺迎, 孙珊珊, 陈晓东. 颗粒材料剪切流动状态转变的环剪试验研究. 力学学报, 2016, 48(5): 1061-1072
    [5] (Ji Shunying, Sun Shanshan, Chen Xiaodong.Shear cell test on transition of shear flow states of granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1061-1072 (in Chinese))
    [6] 赵子渊, 李昱君, 王富帅等. 玻璃-橡胶混合颗粒体系的弹性行为研究. 物理学报, 2018, 67(10): 104502
    [6] (Zhao Ziyuan, Li Yujun, Wang Fushuai, et al.Elastic behavior of glass-rubber mixed particles system. Acta Physica Sinica, 2018, 67(10): 104502 (in Chinese))
    [7] 常晓林, 马刚, 周伟等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响. 岩土工程学报, 2012, 34(4): 646-653
    [7] (Chang Xiaolin, Ma Gang, Zhou Wei, et al.Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653 (in Chinese))
    [8] 严颖, 赵金凤, 季顺迎. 块石含量和空间分布对土石混合体抗剪强度影响的离散元分析. 工程力学, 2017, 34(6): 146-156
    [8] (Yan Ying, Zhao Jinfeng, Ji Shunying.Discrete element analysis of the influence of rock content and rock spatial distribution on shear strength of rock-soil mixtures. Engineering Mechanics, 2017, 34(6): 146-156 (in Chinese))
    [9] 蒋明镜, 张安, 付昌等. 各向异性砂土宏微观特性三维离散元分析. 岩土工程学报, 2017, 39(12): 2165-2172
    [9] (Jiang Mingjing, Zhang An, Fu Chang, et al.Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172 (in Chinese))
    [10] Lu G, Third JR, Müller CR.Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chemical Engineering Science, 2015, 127: 425-465
    [11] Zhong W, Yu A, Liu X, et al.Dem/cfd-dem modelling of non-spherical particulate systems: Theoretical developments and applications. Powder Technology, 2016, 302: 108-152
    [12] Zhao S, Zhang N, Zhou X, et al.Particle shape effects on fabric of granular random packing. Powder Technology, 2017, 310: 175-186
    [13] Gui N, Yang X, Tu J, et al.Effect of roundness on the discharge flow of granular particles. Powder Technology, 2017, 314: 140-147
    [14] Govender N, Wilke DN, Pizette P, et al.A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the blaze-dem gpu code. Applied Mathematics and Computation, 2017, 319: 318-336
    [15] 赵金凤, 严颖, 季顺迎. 基于离散元模型的土石混合体直剪试验分析. 固体力学学报, 2014, 35(2): 124-134
    [15] (Zhang Jinfeng, Yan Ying, Ji Shunying.Analysis of direct shear test of soil-rock mixture based on discrete element model. Chinese Journal of Soid Mechanics, 2014, 35(2): 124-134 (in Chinese))
    [16] 刘扬, 韩燕龙, 贾富国等. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 264-271
    [16] (Liu Yang, Han Yanlong, Jia Fuguo, et al.Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 264-271 (in Chinese))
    [17] 刘璐, 龙雪, 季顺迎. 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算. 力学学报, 2015, 47(6): 1046-1057
    [17] (Liu Lu, Long Xue, Ji Shunying.Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1046-1057 (in Chinese))
    [18] 孙珊珊, 严颖, 赵春发等. 往复荷载下铁路道砟沉降特性的扩展多面体离散元分析. 铁道学报, 2015, 37(11): 89-95
    [18] (Sun Shanshan, Yan Ying, Zhao Chunfa, et al.Dilated polyhedral discrete element analysis of settlement characteristics of railway ballast under cyclic loading. Journal of The China Railway Society, 2015, 37(11): 89-95 (in Chinese))
    [19] 崔泽群, 陈友川, 赵永志等. 基于超二次曲面的非球形离散单元模型研究. 计算力学学报, 2013, 30(6): 854-859
    [19] (Cui Zequn, Chen Youchuan, Zhao Yongzhi, et al.Study of discrete element model for non-sphere particles base on super-quadric. Chinese Journal of Computational Mechanics, 2013, 30(6): 854-859 (in Chinese))
    [20] Cleary PW, Hilton JE, Sinnott MD.Modelling of industrial particle and multiphase flows. Powder Technology, 2016, 314: 232-252
    [21] Sinnott MD, Cleary PW.The effect of particle shape on mixing in a high shear mixer. Computational Particle Mechanics, 2015, 3(4): 477-504
    [22] Cleary PW, Sinnott MD, Morrison RD, et al.Analysis of cone crusher performance with changes in material properties and operating conditions using dem. Minerals Engineering, 2017, 100: 49-70
    [23] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501
    [23] (Wang Siqiang, Ji Shunying.Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method. Acta Physica Sinica, 2018, 67(9): 094501 (in Chinese))
    [24] Lu G, Third JR, Müller CR.Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in dem simulations. Chemical Engineering Science, 2012, 78(34): 226-235
    [25] 冯春, 李世海, 刘晓宇. 基于颗粒离散元法的连接键应变软化模型及其应用. 力学学报, 2016, 48(1): 76-85
    [25] (Feng Chun, Li Shihai, Liu Xiaoyu.Particle-dem based linked bar strain softening model and its application. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 76-85 (in Chinese))
    [26] 修晨曦, 楚锡华. 基于微形态模型的颗粒材料中波的频散现象研究. 力学学报, 2018, 50(2): 315-328
    [26] (Xiu Chenxi, Chu Xihua.Study on dispersion behavior and band gap in granular materials based on a micromorphic model. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 315-328 (in Chinese))
    [27] 王增会, 李锡夔. 基于介观力学信息的颗粒材料损伤-愈合与塑性宏观表征. 力学学报, 2018, 50(2): 284-296
    [27] (Wang Zenghui, Li Xikui.Meso-mechanically informed macroscopic characterization of damage- healing-plasticity for granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 284-296 (in Chinese))
    [28] Zhu HP, Zhou ZY, Yang RY, et al.Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 2007, 62(13): 3378-3396
    [29] Feng Yuntian, Zhao Tingting, Kato Jun, et al.Stochastic discrete element modelling of rough particles-a random normal interaction law. Chinese Journal of Computational Mechanics, 2016, 33(4): 629-636
    [30] 叶晓燕, 王等明, 郑晓静. 基于应力波动的修正非局部流变模型. 力学学报, 2016, 48(1): 40-47
    [30] (Ye Xiaoyan, Wang Dengming, Zheng Xiaojing.A modified nonlocal rheology model for dense granular flow. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 40-47 (in Chinese))
    [31] Feng YT, Han K, Owen DRJ.Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Computer Methods in Applied Mechanics and Engineering, 2012, 205(1): 169-177
    [32] Zheng QJ, Zhou ZY, Yu AB.Contact forces between viscoelastic ellipsoidal particles. Powder Technology, 2013, 248: 25-33
    [33] Lu G, Third JR, Müller CR.Effect of wall rougheners on cross-sectional flow characteristics for non-spherical particles in a horizontal rotating cylinder. Particuology, 2014, 12(1): 44-53
    [34] Delaney GW, Morrison RD, Sinnott MD, et al.Dem modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Minerals Engineering, 2015, 74: 112-122
    [35] AH B.Superquadrics and angle-preserving transformations. IEEE Comput Graph Appl, 1981, 1(1): 11-23
    [36] Cleary PW, Sawley ML.Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling, 2002, 26(2): 89-111
    [37] Cleary PW.Large scale industrial DEM modeling. Engineering Computations, 2004, 21(2-3-4): 169-204
    [38] Portal R, Dias J, De Sousa L.Contact detection between convex superquadric surfaces. Archive of Mechanical Engineering, 2010, 57(2): 165-186
    [39] Podlozhnyuk A, Pirker S, Kloss C.Efficient implementation of superquadric particles in discrete element method within an open-source framework. Computational Particle Mechanics, 2016, 4(1): 101-118
    [40] Goldman R.Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 2005, 22(7): 632-658
    [41] Di Renzo A, Di Maio FP.Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chemical Engineering Science, 2004, 59(3): 525-541
    [42] Zhou Y.A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading. Theoretical & Applied Mechanics Letters, 2011, 1(4): 34-39
    [43] Zhou Y.Modeling of softsphere normal collisions with characteristic of coefficient of restitution dependent on impact velocity. Theoretical & Applied Mechanics Letters, 2013, 3(2): 16-20
    [44] Wojtkowski M, Pecen J, Horabik J, et al.Rapeseed impact against a flat surface: Physical testing and DEM simulation with two contact models. Powder Technology, 2010, 198(1): 61-68.
    [45] Dubey A, Sarkar A, Ierapetritou M, et al.Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 1 - DEM Based Methods. Macromolecular Materials & Engineering, 2011, 296(3-4): 290-307
    [46] Sinnott MD, Cleary PW.Vibration-induced arching in a deep granular bed. Granular Matter, 2009, 11(5): 345-364
    [47] Stevens AB, Hrenya CM.Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technology, 2005, 154(2): 99-109
    [48] Kodam M, Bharadwaj R, Curtis J, et al.Cylindrical object contact detection for use in discrete element method simulations, part ii—experimental validation. Chemical Engineering Science, 2010, 65(22): 5863-5871
    [49] Liu SD, Zhou ZY, Zou RP, et al.Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technology, 2014, 253: 70-79
    [50] Langston PA, Al-Awamleh MA, Fraige FY, et al.Distinct element modelling of non-spherical frictionless particle flow. Chemical Engineering Science, 2004, 59(2): 425-435
    [51] Dong K, Wang C, Yu A.A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chemical Engineering Science, 2015, 126: 500-516
    [52] Fraige FY, Langston PA, Chen GZ.Distinct element modelling of cubic particle packing and flow. Powder Technology, 2008, 186(3): 224-240
  • 加载中
计量
  • 文章访问数:  1005
  • HTML全文浏览量:  96
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-01
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回