EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温气体热化学反应的DSMC微观模型分析

杨超 孙泉华

杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析[J]. 力学学报, 2018, 50(4): 722-733. doi: 10.6052/0459-1879-18-056
引用本文: 杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析[J]. 力学学报, 2018, 50(4): 722-733. doi: 10.6052/0459-1879-18-056
Yang Chao, Sun Quanhua. ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733. doi: 10.6052/0459-1879-18-056
Citation: Yang Chao, Sun Quanhua. ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733. doi: 10.6052/0459-1879-18-056

高温气体热化学反应的DSMC微观模型分析

doi: 10.6052/0459-1879-18-056
基金项目: 中国科学院战略性先导专项(XDAI7030100)和国家自然科学基金(11372325, 91116013) 资助项目.
详细信息
    作者简介:

    *孙泉华, 研究员, 主要研究方向: 稀薄气体与非平衡流动. E-mail:qsun@imech.ac.cn

    通讯作者:

    孙泉华

  • 中图分类号: O354.7, O362;

ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)

  • 摘要: 热化学耦合的非平衡现象一直是高温气体热化学问题研究的难点, 制约了诸如爆轰波胞格结构、低温点火速率等现象的分析. 本文以高温氮气离解和氢氧燃烧中的链式置换反应为例, 从微观反应概率、振动态指定的反应速率、热力学非平衡态的宏观反应速率、碰撞后的能量再分配等角度, 分析了直接蒙特卡罗模拟中的典型化学反应模型(TCE, VFD, QK模型)的微观动力学性质. 研究发现, 无论是高活化能的高温离解反应还是低活化能的链式置换反应, 实际参与反应的分子的振动能概率分布都偏离了平衡态的Boltzmann分布, 包含较强振动能额外影响的VFD模型可以很好地模拟高温离解反应, 而TCE (VFD的一个特例)和QK模型对活化能较低的链式置换反应的预测效果相对更好. 此外, 化学反应碰撞后的能量再分配应遵循微观细致平衡原理, 细微的偏差都可能造成平动能和振动能难以达到最终的平衡状态. 直接蒙特卡罗模拟的应用评估结果表明, 化学反应的振动倾向对热化学耦合过程产生了明显的影响, 特别是由于高振动能分子更多地参与了化学反应, 气体平均振动能的下降将影响后续化学反应的进行.

     

  • [1] 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27
    [1] (Chen Song, Sun Quanhua.Analysis of maximum dissociation degree of oxygen during hypersonic flight.Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese))
    [2] 彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703
    [2] (Peng Aoping, Li Zhihui, Wu Junlin, et al.Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation.Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese))
    [3] 张子健, 刘云峰, 姜宗林, 振动激发对高超声速气动力/热影响. 力学学报, 2017, 49(3): 616-626
    [3] (Zhang Zijian, Liu Yunfeng, Jiang Zonglin.Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese))
    [4] Fiévet R, Voelkel S, Koo H, et al.Effect of thermal nonequilibrium on ignition in scramjet combustors.Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910
    [5] Shi L, Shen H, Zhang P, et al.Assessment of vibrational non-equilibrium effect on detonation cell size.Combustion Science and Technology, 2017, 189(5): 841-85
    [6] 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰波的数值研究. 力学学报, 2017, 49(2): 268-273
    [6] (Fang Yishen, Hu Zongmin, Teng Honghui, et al.Numerical study of the oblique detonation initiation induced by spheres.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese))
    [7] Park C.Assessment of two-temperature kinetic model for ionizing air.Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244
    [8] Park C. The limits of two-temperature model. AIAA Paper, 2010-911, 2010
    [9] Voelkel S, Raman V, Varghese PL.Effect of thermal nonequilibrium on reactions in hydrogen combustion.Shock Waves, 2016, 26(5): 539-549
    [10] Bird GA.Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Oxford: Clarendon Press, 1994
    [11] 樊菁. 稀薄气体动力学: 进展与应用. 力学进展, 2013, 43(2): 185-201
    [11] (Fan Jing.Rarefied gas dynamics: Advances and applications.Advances In Mechanics, 2013, 43(2): 185-201 (in Chinese))
    [12] Haas BL, Boyd ID.Models for direct Monte Carlo simulation of coupled vibration-dissociation.Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 478-489
    [13] Boyd ID, Bose D, Candler GV.Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations.Physics of Fluids, 1997, 9(4): 1162-1170
    [14] Bondar Y, Gimelshein N, Gimelshein S, et al.On the accuracy of DSMC modeling of rarefied flows with real gas effects.AIP Conference Proceedings, 2005, 762(1): 607-613
    [15] Bondar YA, Ivanov MS. DSMC dissociation model based on two-temperature chemical rate constant. AIAA Paper, 2007-614, 2007
    [16] Wysong IJ, Gimelshein SF.Comparison of DSMC reaction models with QCT reaction rates for nitrogen.AIP Conference Proceedings, 2016, 1786(1): 050021
    [17] Bird GA.The QK model for gas-phase chemical reaction rates.Physics of Fluids, 2011, 23(10): 106101
    [18] Baikov BS, Bayalina DK, Kustova EV, et al.Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions.AIP Conference Proceedings, 2016, 1786(1): 090005
    [19] Luo H, Kulakhmetov M, Alexeenko A.Ab initio state-specific N2+O dissociation and exchange modeling for molecular simulations.The Journal of Chemical Physics, 2017, 146(7): 074303
    [20] Sebastião IB, Kulakhmetov M, Alexeenko A.DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models.Physics of Fluids, 2017, 29(1): 017102
    [21] Ramin Z, Kamali-Moghadam R, Mani M.A new approach for chemical reaction simulation of rarefied gas flow by DSMC method.Computers & Fluids, 2016(140): 111-121
    [22] Sebastiao IB, Luo H, Kulakhmetov M, et al.DSMC implementation of compact state-specific N<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml229-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>+O dissociation and exchange models//55th AIAA Aerospace Sciences Meeting, 2017
    [23] Boyd ID.Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen.Physics of Fluids A : Fluid Dynamics, 1992: 4(1): 178-185
    [24] Kim JG, Boyd ID.Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections.Physics of Fluids, 2014, 26(1): 012006
    [25] Wysong I, Gimelshein S, Gimelshein N, et al.Reaction cross sections for two direct simulation Monte Carlo models: Accuracy and sensitivity analysis.Physics of Fluids, 2012, 24(4): 042002
    [26] Wysong I, Gimelshein S, Bondar Y, et al.Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements.Physics of Fluids, 2014, 26(4): 043101
    [27] Valentini P, Schwartzentruber TE, Bender JD, et al.Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface.Physics of Fluids, 2015, 27(8): 086102
    [28] Bird GA. The DSMC Method.Create Space Independent Publishing Platform, 2013
    [29] Bird GA.Chemical reactions in DSMC.AIP Conference Proceedings, 2011, 1333(1): 1195-1202
    [30] Bondar YA, Maruta K, Ivanov MS.Hydrogen-oxygen detonation study by the DSMC method.AIP Conference Proceedings, 2011, 1333(1): 1209-1214
    [31] Yang C, Sun QH.Investigation of spontaneous combustion of hydrogen-oxygen mixture using DSMC simulation.AIP Conference Proceedings, 2014, 1628(1): 1261-1267
    [32] Gimelshein SF, Gimelshein NE, Levin DA, et al.On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method.Physics of Fluids, 2004, 16(7): 2442-2451
    [33] Saxena P, Williams FA.Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide.Combustion and Flame, 2006, 145(1): 316-323
    [34] Bender JD, Valentini P, Nompelis I, et al.An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml230-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula> dissociation reactions.The Journal of Chemical Physics, 2015, 143(5): 054304
    [35] Gimelshein NE, Gimelshein SF, Levin DA.Vibrational relaxation rates in the direct simulation Monte Carlo method.Physics of Fluids, 2002, 14(12): 4452-4455
    [36] Maas U, Warnatz J.Ignition processes in hydrogen oxygen mixtures.Combustion and Flame, 1988, 74(1): 53-69
    [37] Dove JE, Teitelbaum H.The vibrational relaxation of H<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml231-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>. I. Experimental measurements of the rate of relaxation by H<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml232-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>, He, Ne, Ar, and Kr.Chemical Physics, 1974, 6(3): 431-444
  • 加载中
计量
  • 文章访问数:  1569
  • HTML全文浏览量:  115
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-07-18

目录

    /

    返回文章
    返回