EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于步态切换的欠驱动双足机器人控制方法

葛一敏 袁海辉 甘春标

葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. doi: 10.6052/0459-1879-18-049
引用本文: 葛一敏, 袁海辉, 甘春标. 基于步态切换的欠驱动双足机器人控制方法[J]. 力学学报, 2018, 50(4): 871-879. doi: 10.6052/0459-1879-18-049
Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. doi: 10.6052/0459-1879-18-049
Citation: Ge Yimin, Yuan Haihui, Gan Chunbiao. CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 871-879. doi: 10.6052/0459-1879-18-049

基于步态切换的欠驱动双足机器人控制方法

doi: 10.6052/0459-1879-18-049
基金项目: 国家自然科学基金资助项目(11772292, 91748126, 11372270).
详细信息
    作者简介:

    *甘春标, 教授, 主要研究方向: 非线性动力学、仿人机器人以及故障诊断. E-mail:cb_gan@zju.edu.cn

    通讯作者:

    甘春标

  • 中图分类号: TP24;

CONTROL METHOD OF AN UNDERACTUATED BIPED ROBOT BASED ON GAIT TRANSITION

  • 摘要: 由于高维、非线性、欠驱动等特点, 3-D双足机器人的稳定性控制依然是一个研究难点. 一些传统的控制方法, 如基于事件的反馈控制方法和PD控制方法, 抗扰动能力较弱, 鲁棒性较差. 通过观察, 人类受到外部扰动影响时, 会通过调整步态重新获得稳定性,相较之下仅依靠一个步态获得的稳定性是有限的. 受此启发, 本文针对上述问题提出一种基于步态切换的欠驱动3-D双足机器人控制方法. 首先, 以能耗最少为优化目标, 通过非线性优化方法预先设计多组不同步长、步速的步态作为参考步态, 以构建一个步态库; 然后, 通过综合考虑步态切换过程中的稳定性与能效, 建立了多目标步态切换函数; 最后, 将该步态切换函数作为优化目标, 并求解该最小化问题获得下一步的参考步态, 从而实现步态切换, 达到使用步态库?多轨迹方法来提高鲁棒性的目的. 在仿真实验中运用该步态切换控制方法, 欠驱动3-D双足机器人可实现相对高度在[-20, 20] mm内随机变化的不平整地面上行走, 而仅采用单步态控制策略则无法克服这样的外部扰动, 从而说明了基于步态切换的欠驱动双足机器人控制方法的有效性.

     

  • [1] 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016, 48(4): 832-842
    [1] (Cheng Jing, Chen Li.Mechanical analysis and calm control of dual-arm space robot for capturing a satellite.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842 (in Chinese))
    [2] 陶波,龚泽宇,丁汉. 机器人无标定视觉伺服控制研究进展. 力学学报, 2016, 48(4): 767-783
    [2] (Tao Bo, Gong Zeyu, Ding Han.Survey on uncalibrated robot visual servoing control.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 767-783 (in Chinese))
    [3] 王冬,吴军,王立平等. 3-PRS并联机器人惯量耦合特性研究. 力学学报, 2016, 48(4): 804-812
    [3] (Wang Dong, Wu Jun, Wang Liping, et al.research on the inertia coupling property of a 3-PRS parallel robot.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 804-812 (in Chinese))
    [4] 胡凌云, 孙增圻. 双足机器人步态控制研究方法综述. 计算机研究与发展, 2005, 42(5): 728-733
    [4] (Hu Lingyun, Sun Zengxi.Survey on gait control strategies for biped robot.Journal of Computer Research and Development, 2005, 42(5): 728-733 (in Chinese))
    [5] Alcaraz-Jimenez JJ, Herrero-Perez D, Martinez-Barbera H.Robust feedback control of ZMP-based gait for the humanoid robot Nao.The International Journal of Robotics Research, 2013, 32(9-10): 1074-1088
    [6] Hurmuzlu Y, Génot F, Brogliato B.Modeling, stability and control of biped robots-a general framework.Automatica, 2004, 40(10): 1647-1664
    [7] 田彦涛, 孙中波, 李宏扬等. 动态双足机器人的控制与优化研究进展. 自动化学报, 2016, 42(8): 1142-1157
    [7] (Tian Yantao, Sun Zhongbo, Li Hongyang, et al.A review of optimal and control strategies for dynamic walking bipedal robots.Acta Automatica Sinica, 2016, 42(8): 1142-1157 (in Chinese))
    [8] Yazdani M, Salarieh H, Saadat Foumani M.Decentralized control of rhythmic activities in fully-actuated/under-actuated robots.Robotics and Autonomous Systems, 2018, 101: 20-33
    [9] Spong MW, Bullo F.Controlled symmetries and passive walking.IEEE Transactions on Automatic Control, 2005, 50(7): 1025-1031
    [10] Ames AD, Sinnet RW, Wendel EDB.Three-dimensional kneed bipedal walking: A hybrid geometric Approach//Hybrid Systems: Computation and Control, International Conference, HSCC 2009, San Francisco, CA, USA, April 13-15, 2009: 16-30
    [11] Gregg RD, Spong MW.Reduction-based control of three-dimensional bipedal walking robots.International Journal of Robotics Research, 2010, 29(6): 680-702
    [12] Manchester IR, Mettin U, Iida F, et al.Stable dynamic walking over uneven terrain.International Journal of Robotics Research, 2011, 30(3): 265-279
    [13] Westervelt ER, Grizzle JW, Koditschek DE.Hybrid zero dynamics of planar biped walkers.IEEE Transactions on Automatic Control, 2003, 48(1): 42-56
    [14] Morris B, Grizzle JW.Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots.IEEE Transactions on Automatic Control, 2009, 54(8): 1751-1764
    [15] Chevallereau C, Abba G, Aoustin Y, et al.Rabbit: a testbed for advanced control theory.IEEE Control Systems Magazine, 2003, 23(5): 57-79
    [16] Sreenath K, Park HW, Poulakakis I, et al.Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL.International Journal of Robotics Research, 2013, 32(3): 324-345.
    [17] Martin E, Post DC, Schmiedeler JP.The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control.International Journal of Robotics Research, 2014, 33(12): 1530-1543
    [18] Gregg RD, Lenzi T, Hargrove LJ, et al.Virtual constraint control of a powered prosthetic leg: From simulation to experiments with transfemoral amputees.IEEE Transactions on Robotics, 2014, 30(6): 1455-1471
    [19] Zhao H, Horn J, Reher J, et al.Multicontact locomotion on transfemoral prostheses via hybrid system models and optimization-based control.IEEE Transactions on Automation Science & Engineering, 2016, 13(2): 502-513
    [20] Zhao H, Ambrose E, Ames AD.Preliminary results on energy efficient 3D prosthetic walking with a powered compliant transfemoral prosthesis// IEEE International Conference on Robotics and Automation, 2017, Singapore, 2017,IEEE, 2017:1140-1147
    [21] Agrawal A, Harib O, Hereid A, et al.First steps towards translating HZD control of bipedal robots to decentralized control of exoskeletons.IEEE Access, 2017, 5(1): 9919-9934
    [22] Chevallereau C, Grizzle JW, Shih CL.Asymptotically stable walking of a five-link underactuated 3-D bipedal robot.IEEE Transactions on Robotics, 2009, 25(1): 37-50
    [23] Ramezani A, Hurst JW, Hamed KA, et al.Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot.Journal of Dynamic Systems Measurement & Control, 2013, 136(2): 729-736
    [24] Griffin B, Grizzle J.Walking gait optimization for accommodation of unknown terrain height variations// American Control Conference (ACC), Chicago IL USA,IEEE, 2015: 4810-4817
    [25] Dai H, Tedrake R.L2-gain optimization for robust bipedal walking on unknown terrain// Robotics and Automation (ICRA), 2013 IEEE International Conference on,Karlsruhe Germany, IEEE, 2013: 3116-3123
    [26] 李超. 欠驱动双足机器人动态步行规划与抗扰动控制. [博士论文]. 杭州:浙江大学, 2015
    [26] (Li Chao.Dynamic locomotion and anti-disturbance control of underactuated biped robots. [PhD Thesis]. Hangzhou: Zhejiang University, 2015 (in Chinese))
    [27] Li C, Xiong R, Zhu QG, et al.Push recovery for the standing under-actuated bipedal robot using the hip strategy.Frontiers of Information Technology & Electronic Engineering, 2015, 16(7): 579-593
    [28] Chen Z, Lakbakbi Elyaaqoubi N, Abba G.Optimized 3D stable walking of a bipedal robot with line-shaped massless feet and sagittal underactuation.Robotics and Autonomous Systems, 2016, 83: 203-213
    [29] Maggiore M, Consolini L.Virtual molonomic constraints for Euler-Lagrange systems.IEEE Transactions on Automatic Control, 2013, 58(4): 1001-1008
    [30] Westervelt ER, Grizzle JW, Koditschek DE.Hybrid zero dynamics of planar biped walkers.IEEE Transactions on Automatic Control, 2003, 48(1): 42-56
    [31] Asano F.Fully analytical solution to discrete behavior of hybrid zero dynamics in limit cycle walking with constraint on impact posture.Multibody System Dynamics, 2015, 35(2): 191-213
    [32] Westervelt ER, Morris B, Farrell KD.Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics.Autonomous Robots, 2007, 23(2): 131-145
    [33] Grizzle JW, Westervelt ER, Canudas-De-Wit C. Event-based PI control of an underactuated biped walker//Decision and Control, 2003, Proceedings. 42nd IEEE Conference on, Maui HI USA, IEEE, 2003: 3091-3096
    [34] Hamed KA, Buss BG, Grizzle JW.Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations.International Journal of Robotics Research, 2016, 35(8): 977-999
  • 加载中
计量
  • 文章访问数:  976
  • HTML全文浏览量:  59
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-07-18

目录

    /

    返回文章
    返回