[1] | Bagnold RA. The Physics of Blown Sand and Desert Dunes. London:Methuen, 1941: 265 | [2] | Alfaro SC, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas. J Geophys Res, 2001, 106(D16): 18075-18084 | [3] | Zhang J, Shao Y, Huang N. Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos Chem Phys, 2014, 14: 8869-8882 | [4] | Yang Y, Russell LM, Lou SJ, et al. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat Commun, 2017, 8: 15333 | [5] | Dumka UC, Kaskaoutis DG, Srivastava MK, et al. Scattering and absorbing properties of near-surface aerosols over Gangetic-Himalayan region: The role of boundary layer dynamics and long-range transport. Atmo Chem Phys, 2015, 15: 1555-1572 | [6] | Mahowald NM, Baker AR, Bergametti G, et al. Atmospheric global dust cycle and iron input to ocean. Global Biogeochemical Cycles, 2005, 19: GB4025 | [7] | Anderson RS, Haff PK. Simulation of eolian saltation. Science, 1988, 241: 820-823 | [8] | Werner BT, Haff PK. Impact process in Aeolian saltation: two dimensional simulations. Sedimentology, 1988, 35: 189-196 | [9] | Rice MA, Willetts BB, McEwan IK. An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology, 1995, 42: 695-706 | [10] | Zheng XJ, Xue L, Zhou YH. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions. Physics Letters A, 2005, 341: 107-118 | [11] | Wang DW, Wang Y, Yang B, et al. Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera. Sedimentology, 2008, 55: 461-470 | [12] | Yin X, Huang N, Wang ZS. A numerical investigation into sand grain/slope bed collision. Powder Technology, 2017, 314: 28-38 | [13] | Owen PR. Saltation of uniform grains in air. J Fluid Mech, 1964, 20: 225-242 | [14] | McEwan IK, Willetts BB. Adaptation of the near-surface wind to the development of sand transport. J Fluid Mech, 1993, 252: 99-115 | [15] | Li ZS, Ni JR, Mendoza C. An analytic expression for wind-velocity profile within the saltation layer. Geomorphology, 2004, 60: 359-369 | [16] | Huang N, Wang ZS. The formation of snow streamers in the turbulent atmosphere boundary layer. Aeolian Research, 2016, 23: 1-10 | [17] | Wang ZT, Zhang CL, Wang HT. Coherent structures over flat sandy surfaces in aeolian environment. Catena, 2017, 159: 144-148 | [18] | Anderson RS. Eolian sediment transport as a stochastic process: The effects of a fluctuating. Journal of Geology, 1987, 95: 497-512 | [19] | 郑晓静,王萍. 风沙流中沙粒随机运动的数值模拟研究. 中国沙漠,2006, 26(2):184-187 | [19] | (Zhen Xiaojing, Wang Ping. Numerical simulation on stochastic movement of sands in wind-blown sand.Journal of Desert Research, 2006, 26(2): 184-187 (in Chinese)) | [20] | Kok JF, Renno NO. A comprehensive numerical model of steady state saltation (COMSALT). Journal of Geophysics Research, 2009, 114, D17204 | [21] | Nalpanis P, Hunt JCR, Barrett C. Saltating particles over flat beds. J Fluid Mech, 1993, 251: 661-685 | [22] | Zhang W, Kang J, Lee S. Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer. Geomorphology, 2007, 86: 320-331 | [23] | Ho DT, Valance A, Dupont P, et al. Aeolian sand transport: Length and height distributions of saltation trajectories. Aeolian Research, 2014, 12: 65-74 | [24] | Oge Marques.实用MATLAB图像和视频处理. 章毓晋译. 北京:清华大学出版社, 2013:260-300 | [24] | (Oge Marques.Practical Image and Video Processing Using MatLab. Zhang Yujin Translation. Beijing:Tsinghua Press, 2013:360-363,277-299 (in Chinese)) | [25] | Zou XY, Cheng H, Zhang CL, et al. Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain. Geomorphology, 2007, 90: 11-22 | [26] | Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition, 1993, 26(9): 1277-1294 | [27] | Zhang YJ. Advances in Image & Video Segmentation. Hershey: Idea Group Inc., 2006: 1-15 | [28] | Dilpreet K, Yadwinder K. Various image segmentation techniques: a review. International Journal of Computer Science and Mobile Computing, 2014, 5(3): 809-814 | [29] | 梅凡民, 蒋缠文. 风沙颗粒运动的数字高速摄影图像的分割算法. 力学学报, 2012, 44(1):83-85 | [29] | (Mei Fanmin, Jiang Chanwen. An arithmetic method of segmenting moving aeolian sand particles’ images from background information of digital high-speed photography images.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):83-85 (in Chinese)) | [30] | Jiang C, Dong Z, Wang Y. An improved particle tracking velocimetry (PTV) technique to evaluate the velocity field of saltating particles. Journal of Arid Land, 2017, 9(5): 727-742 | [31] | 蒋缠文,王晓艳, 董治宝. 高速摄影技术在风沙颗粒测速中的应用研究.干旱区地理, 2017, 40(4):746-749 | [31] | (Jiang Chanwen, Wang Xiaoyan, Dong Zhibao. High-speed photography in measuring the velocity of sand particles in an air/particle two-phase flow.Aria Land Geography, 2017, 40(4): 746-749 (in Chinese)) | [32] | Nobuyuki O. A threshold selection method from gray-level histograms. IEEE Trans. on System, Man, and Cybernetics, 1979, 9(1): 62-66 | [33] | 刘文洪, 万甜, 程文娟等. 基于图像二值化处理的气泡羽流不稳定结构分析. 水利学报,2009, 40(11): 1369-1373 | [33] | (Liu Wenghong, Wan Tian, Cheng Wenjuan, et al. Analysis on steady structure of bubble plume in the basis of image binarization.Journal of Hydraulic Engineering, 2009, 40(11): 1369-1373 (in Chinese)) | [34] | 薛婷, 孟欣东, 张涛. 气液两相流中气泡形态及运动特征参数提取. 光电子激光,2010, 21(8):1218-1220 | [34] | (Xue Ting, Meng Xindong, Zhang Tao. Extraction of bubble shape and motion feature parameters in the gas-liquid two-phase flow.Journal of Optoelectronics · Laser,2010, 21(8):1218-1220 (in Chinese)) | [35] | 尹延春,赵同彬,谭云亮等. 基于Otsu 图像处理的岩石细观模型重构及数值试验. 岩土力学,2015, 36(9):2532-2541 | [35] | (Yin Yanchun, Zhao Tongbin, Tan Yunliang, et al. Reconstruction and numerical test of the mesoscopic model of rock based on Otsu digital image processing.Rock and Soil Mechanics, 2015, 36(9):2532-2541 (in Chinese)) | [36] | 张爱华, 王帆, 陈海燕. 基于改进CV模型的高原鼠兔图像分割. 华中科技大学学报(自然科学版), 2017, 45(8):32-37 | [36] | (Zhang Aihua, Wang Fan, Chen Haiyan. Ochotona curzoniae image segmentation based on the improved CV model.J Huazhong Univ of Sci & Tech ( Natural Science Edition), 2017, 45(8):32-37 (in Chinese)) | [37] | Ohmi K, Li HY. Particle-tracking velocimetry with new algorithms. Measurement Science and Technology, 2000, 11: 603-616 | [38] | 刘江,王元,杨斌. 高频测量输沙浓度对湍流脉动的频率响应. 西安交通大学学报, 2010, 44(11): 113-118 | [38] | (Liu Jiang, Wang Yuan, Yang Bin. High-frequency measurements of particle response to turbulence.Journal of Xi’An Jiaotong University, 2010, 44(11): 113-118 (in Chinese)) | [39] | 贾攀,王元,张洋. 基于Delaunay网格技术的松弛迭代粒子追踪算法. 空气动力学报,2012,30(6):792-797 | [39] | (Jia Pan, Wang Yuan, Zhang Yang. Relaxation based on PTV with Delaunay triangulation. Acta Aerodynamic Sinica, 2012, 30(6):792-797 (in Chinese)) | [40] | Jia P, Wang Y, Zhang Y. Improvement in the independence of relaxation method-based particle tracking velocimetry. Measurement Science and Technology, 2013, 24: 1-13 |
|