EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的高浓度风沙图像的动态灰度阈值分割算法

梅凡民 雒遂 陈金广

梅凡民, 雒遂, 陈金广. 一种改进的高浓度风沙图像的动态灰度阈值分割算法[J]. 力学学报, 2018, 50(3): 699-707. doi: 10.6052/0459-1879-18-040
引用本文: 梅凡民, 雒遂, 陈金广. 一种改进的高浓度风沙图像的动态灰度阈值分割算法[J]. 力学学报, 2018, 50(3): 699-707. doi: 10.6052/0459-1879-18-040
Mei Fanmin, Luo Sui, Chen Jinguang. AN IMPROVED ALGORITHM OF DYNAMIC GRAY-THRESHOLDING FOR SEGMENTING DENSE AEOLIAN SAND PARTICLES IMAGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 699-707. doi: 10.6052/0459-1879-18-040
Citation: Mei Fanmin, Luo Sui, Chen Jinguang. AN IMPROVED ALGORITHM OF DYNAMIC GRAY-THRESHOLDING FOR SEGMENTING DENSE AEOLIAN SAND PARTICLES IMAGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 699-707. doi: 10.6052/0459-1879-18-040

一种改进的高浓度风沙图像的动态灰度阈值分割算法

doi: 10.6052/0459-1879-18-040
基金项目: 国家自然科学基金 (41340043)、陕西省科技厅自然科学基金 (2014JM5207) 和陕西省教育厅专项 (14JK1291) 资助项目.
详细信息
    作者简介:

    通讯作者:梅凡民,教授,主要研究方向:风沙多相流力学与大气环境. E-mail:meifanmin@xpu.edu.cn

    通讯作者:

    梅凡民

  • 中图分类号: TP751.1;

AN IMPROVED ALGORITHM OF DYNAMIC GRAY-THRESHOLDING FOR SEGMENTING DENSE AEOLIAN SAND PARTICLES IMAGES

  • 摘要: 风沙跃移是塑造干旱区地貌的最主要的动力,其伴生的粉尘的释放、输送和沉降不但严重地影响了大气环境质量,也引起了全球气候 系统和海洋系统的变化. 单个沙粒轨迹形成是理解粒--床碰撞过程和风沙两相流耦合过程的重要纽带. 高浓度风沙图像处理算法是深入理解沙粒轨迹形成机制的关键技术. 为了实现对高浓度风沙图像精细处理, 本文提出了不依赖于经验参数的动态灰度阈值分割算法,它包括背景模板去噪、绿光通道灰度化处理、图像微分、灰度方差阈值目标检测和 最大类间方差灰度阈值分割等,其中背景模板去噪和灰度方差阈值目标检测等是新算法的主要亮点. 高浓度风沙图像分割实验显示, 扣减背景模板去除了条纹状和斑点状的稳定噪声;图像微分和灰度方差阈值目标检测显著地提高了暗沙粒识别的数量并有效地去除了随机噪声; 改进算法的沙粒有效识别个数(人 机判读坐标一致的沙粒数目)、查全率(计算机提取沙粒数目与人工判读的实际沙粒数比值)和查准率(有效沙粒数目与实际沙粒数目的比值) 分别为461, 71%和86%,显著地高于传统算法对应的85, 13%和82%,这表明新算法对高浓度风沙图像的分割效果良好. 避免单粒子分割和表观重叠问题是进一步完善高浓度风沙图像的分割算法的可能途径.

     

  • [1] Bagnold RA. The Physics of Blown Sand and Desert Dunes. London:Methuen, 1941: 265
    [2] Alfaro SC, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas. J Geophys Res, 2001, 106(D16): 18075-18084
    [3] Zhang J, Shao Y, Huang N. Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos Chem Phys, 2014, 14: 8869-8882
    [4] Yang Y, Russell LM, Lou SJ, et al. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat Commun, 2017, 8: 15333
    [5] Dumka UC, Kaskaoutis DG, Srivastava MK, et al. Scattering and absorbing properties of near-surface aerosols over Gangetic-Himalayan region: The role of boundary layer dynamics and long-range transport. Atmo Chem Phys, 2015, 15: 1555-1572
    [6] Mahowald NM, Baker AR, Bergametti G, et al. Atmospheric global dust cycle and iron input to ocean. Global Biogeochemical Cycles, 2005, 19: GB4025
    [7] Anderson RS, Haff PK. Simulation of eolian saltation. Science, 1988, 241: 820-823
    [8] Werner BT, Haff PK. Impact process in Aeolian saltation: two dimensional simulations. Sedimentology, 1988, 35: 189-196
    [9] Rice MA, Willetts BB, McEwan IK. An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology, 1995, 42: 695-706
    [10] Zheng XJ, Xue L, Zhou YH. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions. Physics Letters A, 2005, 341: 107-118
    [11] Wang DW, Wang Y, Yang B, et al. Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera. Sedimentology, 2008, 55: 461-470
    [12] Yin X, Huang N, Wang ZS. A numerical investigation into sand grain/slope bed collision. Powder Technology, 2017, 314: 28-38
    [13] Owen PR. Saltation of uniform grains in air. J Fluid Mech, 1964, 20: 225-242
    [14] McEwan IK, Willetts BB. Adaptation of the near-surface wind to the development of sand transport. J Fluid Mech, 1993, 252: 99-115
    [15] Li ZS, Ni JR, Mendoza C. An analytic expression for wind-velocity profile within the saltation layer. Geomorphology, 2004, 60: 359-369
    [16] Huang N, Wang ZS. The formation of snow streamers in the turbulent atmosphere boundary layer. Aeolian Research, 2016, 23: 1-10
    [17] Wang ZT, Zhang CL, Wang HT. Coherent structures over flat sandy surfaces in aeolian environment. Catena, 2017, 159: 144-148
    [18] Anderson RS. Eolian sediment transport as a stochastic process: The effects of a fluctuating. Journal of Geology, 1987, 95: 497-512
    [19] 郑晓静,王萍. 风沙流中沙粒随机运动的数值模拟研究. 中国沙漠,2006, 26(2):184-187
    [19] (Zhen Xiaojing, Wang Ping. Numerical simulation on stochastic movement of sands in wind-blown sand.Journal of Desert Research, 2006, 26(2): 184-187 (in Chinese))
    [20] Kok JF, Renno NO. A comprehensive numerical model of steady state saltation (COMSALT). Journal of Geophysics Research, 2009, 114, D17204
    [21] Nalpanis P, Hunt JCR, Barrett C. Saltating particles over flat beds. J Fluid Mech, 1993, 251: 661-685
    [22] Zhang W, Kang J, Lee S. Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer. Geomorphology, 2007, 86: 320-331
    [23] Ho DT, Valance A, Dupont P, et al. Aeolian sand transport: Length and height distributions of saltation trajectories. Aeolian Research, 2014, 12: 65-74
    [24] Oge Marques.实用MATLAB图像和视频处理. 章毓晋译. 北京:清华大学出版社, 2013:260-300
    [24] (Oge Marques.Practical Image and Video Processing Using MatLab. Zhang Yujin Translation. Beijing:Tsinghua Press, 2013:360-363,277-299 (in Chinese))
    [25] Zou XY, Cheng H, Zhang CL, et al. Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain. Geomorphology, 2007, 90: 11-22
    [26] Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition, 1993, 26(9): 1277-1294
    [27] Zhang YJ. Advances in Image & Video Segmentation. Hershey: Idea Group Inc., 2006: 1-15
    [28] Dilpreet K, Yadwinder K. Various image segmentation techniques: a review. International Journal of Computer Science and Mobile Computing, 2014, 5(3): 809-814
    [29] 梅凡民, 蒋缠文. 风沙颗粒运动的数字高速摄影图像的分割算法. 力学学报, 2012, 44(1):83-85
    [29] (Mei Fanmin, Jiang Chanwen. An arithmetic method of segmenting moving aeolian sand particles’ images from background information of digital high-speed photography images.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):83-85 (in Chinese))
    [30] Jiang C, Dong Z, Wang Y. An improved particle tracking velocimetry (PTV) technique to evaluate the velocity field of saltating particles. Journal of Arid Land, 2017, 9(5): 727-742
    [31] 蒋缠文,王晓艳, 董治宝. 高速摄影技术在风沙颗粒测速中的应用研究.干旱区地理, 2017, 40(4):746-749
    [31] (Jiang Chanwen, Wang Xiaoyan, Dong Zhibao. High-speed photography in measuring the velocity of sand particles in an air/particle two-phase flow.Aria Land Geography, 2017, 40(4): 746-749 (in Chinese))
    [32] Nobuyuki O. A threshold selection method from gray-level histograms. IEEE Trans. on System, Man, and Cybernetics, 1979, 9(1): 62-66
    [33] 刘文洪, 万甜, 程文娟等. 基于图像二值化处理的气泡羽流不稳定结构分析. 水利学报,2009, 40(11): 1369-1373
    [33] (Liu Wenghong, Wan Tian, Cheng Wenjuan, et al. Analysis on steady structure of bubble plume in the basis of image binarization.Journal of Hydraulic Engineering, 2009, 40(11): 1369-1373 (in Chinese))
    [34] 薛婷, 孟欣东, 张涛. 气液两相流中气泡形态及运动特征参数提取. 光电子激光,2010, 21(8):1218-1220
    [34] (Xue Ting, Meng Xindong, Zhang Tao. Extraction of bubble shape and motion feature parameters in the gas-liquid two-phase flow.Journal of Optoelectronics · Laser,2010, 21(8):1218-1220 (in Chinese))
    [35] 尹延春,赵同彬,谭云亮等. 基于Otsu 图像处理的岩石细观模型重构及数值试验. 岩土力学,2015, 36(9):2532-2541
    [35] (Yin Yanchun, Zhao Tongbin, Tan Yunliang, et al. Reconstruction and numerical test of the mesoscopic model of rock based on Otsu digital image processing.Rock and Soil Mechanics, 2015, 36(9):2532-2541 (in Chinese))
    [36] 张爱华, 王帆, 陈海燕. 基于改进CV模型的高原鼠兔图像分割. 华中科技大学学报(自然科学版), 2017, 45(8):32-37
    [36] (Zhang Aihua, Wang Fan, Chen Haiyan. Ochotona curzoniae image segmentation based on the improved CV model.J Huazhong Univ of Sci & Tech ( Natural Science Edition), 2017, 45(8):32-37 (in Chinese))
    [37] Ohmi K, Li HY. Particle-tracking velocimetry with new algorithms. Measurement Science and Technology, 2000, 11: 603-616
    [38] 刘江,王元,杨斌. 高频测量输沙浓度对湍流脉动的频率响应. 西安交通大学学报, 2010, 44(11): 113-118
    [38] (Liu Jiang, Wang Yuan, Yang Bin. High-frequency measurements of particle response to turbulence.Journal of Xi’An Jiaotong University, 2010, 44(11): 113-118 (in Chinese))
    [39] 贾攀,王元,张洋. 基于Delaunay网格技术的松弛迭代粒子追踪算法. 空气动力学报,2012,30(6):792-797
    [39] (Jia Pan, Wang Yuan, Zhang Yang. Relaxation based on PTV with Delaunay triangulation. Acta Aerodynamic Sinica, 2012, 30(6):792-797 (in Chinese))
    [40] Jia P, Wang Y, Zhang Y. Improvement in the independence of relaxation method-based particle tracking velocimetry. Measurement Science and Technology, 2013, 24: 1-13
  • 加载中
计量
  • 文章访问数:  953
  • HTML全文浏览量:  155
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-11
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回