EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载下裂纹应力强度因子计算的改进型扩展有限元法

文龙飞 王理想 田荣

文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法[J]. 力学学报, 2018, 50(3): 599-610. doi: 10.6052/0459-1879-18-030
引用本文: 文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法[J]. 力学学报, 2018, 50(3): 599-610. doi: 10.6052/0459-1879-18-030
Wen Longfei, Wang Lixiang, Tian Rong. ACCURATE COMPUTATION ON DYNAMIC SIFS USING IMPROVED XFEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 599-610. doi: 10.6052/0459-1879-18-030
Citation: Wen Longfei, Wang Lixiang, Tian Rong. ACCURATE COMPUTATION ON DYNAMIC SIFS USING IMPROVED XFEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 599-610. doi: 10.6052/0459-1879-18-030

动载下裂纹应力强度因子计算的改进型扩展有限元法

doi: 10.6052/0459-1879-18-030
基金项目: 国家重点研发计划(2016YFB0201002, 2016YFB0201004),国家自然科学基金(11472274, 91530319),科学挑战专题(JCKY2016212A502)资助项目.
详细信息
    作者简介:

    通讯作者: 田荣, 研究员, 主要研究方向: 计算力学与高性能计算. E-mail: tian_rong@iapcm.ac.cn

    通讯作者:

    田荣

  • 中图分类号: TB115,O346.1;

ACCURATE COMPUTATION ON DYNAMIC SIFS USING IMPROVED XFEM

  • 摘要: 相较于常规扩展有限元法(extended finite element method, XFEM), 改进型扩展有限元法(improved XFEM) 解决了现有方法线性相关与总体刚度矩阵高度病态问题, 在数量级上提升了总体方程的求解效率, 克服了现有方法在动力学问题中的能量正确传递、动态应力强度因子数值震荡、精度低下问题. 本文基于改进型XFEM, 采用Newmark 隐式时间积分算法, 重点研究了动载荷作用下扩展裂纹尖端应力强度因子的求解方法, 与静力学方法相比, 增加了裂纹扩展速度项与惯性项的贡献. 通过数值算例研究了网格单元尺寸、质量矩阵、时间步长、裂尖加强区域、惯性项、扩展速度项及相互作用积分区域J-domain的网格与单元尺寸对动态应力强度因子求解精度的影响, 验证了改进型XFEM计算动态裂纹应力强度因子方法的有效性. 针对文献中具有挑战性的 "I 型半无限长裂纹先稳定后扩展"问题, 改进型XFEM给出目前为止精度最好的动态应力强度因子数值解.

     

  • [1] 邹广平, 谌赫, 唱忠良. 一种基于SHTB 的II 型动态断裂实验技术. 力学学报, 2017, 49(1): 117-125
    [1] (Zou Guangping, Chen He, Chang Zhongliang. A modified mode II dynamic fracture test technique based on SHTB. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125 (in Chinese))
    [2] 马天宝, 任会兰, 李健等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016, 48(3): 599-608
    [2] (Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608 (in Chinese))
    [3] Song Y, Hu H, Rudnicki JW. Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid. International Journal of Solids and Structures, 2017, 110: 127-136
    [4] 彭凡, 马庆镇, 戴宏亮. 黏弹性功能梯度材料裂纹问题的有限元方法. 力学学报, 2013, 45(3): 359-366
    [4] (Peng Fan, Ma Qingzhen, Dai Hongliang. Finite element method for crack problems in viscoelastic functionally graded materials. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 359-366 (in Chinese))
    [5] 卢梦凯, 张洪武, 郑勇刚. 应变局部化分析的嵌入强间断多尺度有限元法. 力学学报, 2017, 49(3): 649-658
    [5] (Lu Mengkai, Zhang Hongwu, Zheng Yonggang. Embedded strong discontinuity model based multiscale finite element method for strain localization analysis. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 649-658 (in Chinese))
    [6] Lei J, Yun L, Bui T Q, et al. Numerical simulation of crack growth in piezoelectric structures by BEM. Engineering Analysis with Boundary Elements, 2017, 85: 30-42
    [7] Sonobe Y, Koyama A, Saimoto A. Basic research on simulation for 3D crack growth by mesh free BFM. Key Engineering Materials, 2016, 713: 5-9
    [8] Kumar S, Singh IV, Mishra BK, et al. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. International Journal of Impact Engineering, 2016, 87: 198-211
    [9] 王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法. 工程力学, 2016, 33(1): 32-38
    [9] (Wang Zhen, Yu Tiantang. Adaptive multiscale extended finite element method for Modeling three-dimensional crack problems. Engineering Mechanics, 2016, 33(1): 32-38 (in Chinese))
    [10] 龚迪光, 曲占庆, 李建雄等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究. 岩土力学, 2016, 37(5): 1512-1520
    [10] (Gong Diguang, Qu Zhanqing, Li Jianxiong, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform. Rock and Soil Mechanics, 2016, 37(5): 1512-1520 (in Chinese))
    [11] 江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013, 34(6): 586-597
    [11] (Jiang Shouyan, Du Chenbin. Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013, 34(6): 586-597 (in Chinese))
    [12] 杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014, 46(5): 730-738
    [12] (Yang Yongtao, Xu Dongdong, Zheng Hong. Evaluation on stress intensity factor at the crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738 (in Chinese))
    [13] Li W, Zheng H, Sun G. The moving least squares based numerical manifold method for vibration and impact analysis of cracked bodies. Engineering Fracture Mechanics, 2018, 190: 410-434
    [14] 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347
    [14] (Zhang Peng, Du Chengbin, Jiang Shouyan. Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese))
    [15] Bleyer J, Roux-Langlois C, Molinari J F. Dynamic crack propagation with a variational phase-field model: Limiting speed, crack branching and velocity-toughening mechanisms. International Journal of Fracture, 2017, 204(1): 79-100.
    [16] 王理想, 唐德泓, 李世海等. 基于混合方法的二维水力压裂数值模拟. 力学学报, 2015, 47(6): 973-983
    [16] (Wang Lixiang, Tang Dehong, Li Shihai, et al. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 973-983 (in Chinese))
    [17] Babuška I, Melenk JM. Partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758
    [18] Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity based generalized FEMs. Computer Methods in Applied Mechanics and Engineering. 2006, 195: 4768-4782
    [19] Gupta V, Duarte C A, Babuška I, et al. Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 355-386
    [20] Babuška I, Banerjee U, Kergrene K. Strongly stable generalized finite element method: Application to interface problems. Computer Methods in Applied Mechanics and Engineering, 2017, 327: 58-92
    [21] Agathos K, Chatzi E, Bordas S, et al. A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. International Journal for Numerical Methods in Engineering, 2016, 105(9): 643-677
    [22] Agathos K, Ventura G, Chatzi E, et al. Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering, 2018, 113: 252-276
    [23] Belytschko T, Chen H, Xu J, et al. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering, 2003, 58: 1873-1905
    [24] Elguedj T, Gravouil A, Maigre H. An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2297-2317
    [25] Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63: 631-659
    [26] Comnescure A, Gravouil A, Gregoire D, et al. XFEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2008, 197(5): 309-318
    [27] Tian R. Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics and Engineering, 2013, 266: 1-22
    [28] Tian R, Wen L. Improved XFEM-An extra-DOF free, well- conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 639-658
    [29] Wen L, Tian R. Improved XFEM: Accurate and robust dynamic crack growth simulation. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 256-285
    [30] 田荣, 文龙飞. 改进型XFEM综述. 计算力学学报, 2016, 33(4): 469-477
    [30] (Tian Rong, Wen Longfei. Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016, 33(4): 469-477 (in Chinese))
    [31] 文龙飞. 改进型扩展有限元法及其并行程序实现. [博士论文]. 北京: 中国科学院大学, 2017
    [31] (Wen Longfei. Improved extended finite element method and its parallel programming. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese))
    [32] 王理想, 文龙飞, 王景焘等. 基于改进型XFEM的裂纹分析并行软件实现. 中国科学: 技术科学, 已录用
    [32] (Wang Lixiang, Wen Longfei, Wang Jingtao, et al. Implementations of parallel software for crack analyses based on the improved XFEM. Scientia Sinica Technologica,Accepted(in Chinese))
    [33] 刘鹏, 余天堂. 压电材料二维动应力强度因子的扩展有限元计算. 振动与冲击, 2013, 32(13): 76-80
    [33] (Liu Peng, Yu Tiantang. Dynamic intensity factor computation for two-dimensional piezoelectric media using an extended finit element method. Journal of Vibration and Shock, 2013, 32(13): 76-80 (in Chinese))
    [34] 刘学聪, 章青, 夏晓舟. 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017, 34(10): 10-18
    [34] (Liu Xuecong, Zhang Qing, Xia Xiaozhou. A new enrichment function of crack tip in XFEM dynamics by explicit time algrorithm. Engineering Mechanics, 2017, 34(10): 10-18 (in Chinese))
    [35] 庄茁, 柳占立, 成斌斌等. 扩展有限元法. 北京: 清华大学出版社, 2012
    [35] (Zhuang Zuo, Liu Zhanli, Cheng Binbin, et al.The Extended Finite Element Method. Beijing: Tsinghua University Press, 2012 (in Chinese))
    [36] 余天堂. 扩展有限单元法?理论、应用及程序. 北京: 科学出版社, 2014
    [36] (Yu Tiantang.The Extended Finite Element Method-Theory, Application and Program. Beijing: Science Press, 2014 (in Chinese))
    [37] Freund LB. Dynamic Fracture Mechanics. Cambridge University Press, 1990
    [38] Menouillard T, Réthoré J, Combescure A, et al. Efficient explicit time stepping for the extended finite element method. International Journal for Numerical Methods in Engineering, 2006, 68: 911-938
    [39] Menouillard T, Song JH, Duan QL, et al. Time dependent crack tip enrichment for dynamic crack propagation. International Journal of Fracture, 2010, 162(1-2): 33-49
    [40] Menouillard T, Belytschko T. Smoothed nodal forces for improved crack propagation modeling in XFEM. International Journal for Numerical Methods in Engineering, 2010, 84: 47-72
    [41] Gravouil A, Elguedj T, Maigre H. An explicit dynamics extended finite element method. Part 2: Element-by-element stable-explicit/explicit dynamic scheme. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2318-2328
    [42] Liu Z L, Menouillard T, Belytschko T. An XFEM/Spectral element method for dynamic crack propagation. International Journal of Fracture, 2011, 169(2): 183-198
    [43] Menouillard T, Belytschko T. Dynamic fracture with meshfree enriched XFEM. Acta Mechanica, 2010, 213(1-2): 53-69
    [44] Kalthoff J F. Modes of dynamic shear failure in solids. International Journal of Fracture, 2000, 101(1-2): 1-31
    [45] Freund LB. Crack propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 129-140
    [46] Freund LB, Douglas AS. Influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 1982, 30(1): 59-74
    [47] Rosakis AJ, Freund LB. Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. Journal of Engineering Materials and Technology, 1982, 104(2): 115-120
    [48] Réthoré J, Gravouil A, Combescure A. A combined space-time extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 64(2): 260-284
  • 加载中
计量
  • 文章访问数:  1357
  • HTML全文浏览量:  162
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回