[1] | 邹广平, 谌赫, 唱忠良. 一种基于SHTB 的II 型动态断裂实验技术. 力学学报, 2017, 49(1): 117-125 | [1] | (Zou Guangping, Chen He, Chang Zhongliang. A modified mode II dynamic fracture test technique based on SHTB. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125 (in Chinese)) | [2] | 马天宝, 任会兰, 李健等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016, 48(3): 599-608 | [2] | (Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608 (in Chinese)) | [3] | Song Y, Hu H, Rudnicki JW. Dynamic stress intensity factor (Mode I) of a permeable penny-shaped crack in a fluid-saturated poroelastic solid. International Journal of Solids and Structures, 2017, 110: 127-136 | [4] | 彭凡, 马庆镇, 戴宏亮. 黏弹性功能梯度材料裂纹问题的有限元方法. 力学学报, 2013, 45(3): 359-366 | [4] | (Peng Fan, Ma Qingzhen, Dai Hongliang. Finite element method for crack problems in viscoelastic functionally graded materials. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 359-366 (in Chinese)) | [5] | 卢梦凯, 张洪武, 郑勇刚. 应变局部化分析的嵌入强间断多尺度有限元法. 力学学报, 2017, 49(3): 649-658 | [5] | (Lu Mengkai, Zhang Hongwu, Zheng Yonggang. Embedded strong discontinuity model based multiscale finite element method for strain localization analysis. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 649-658 (in Chinese)) | [6] | Lei J, Yun L, Bui T Q, et al. Numerical simulation of crack growth in piezoelectric structures by BEM. Engineering Analysis with Boundary Elements, 2017, 85: 30-42 | [7] | Sonobe Y, Koyama A, Saimoto A. Basic research on simulation for 3D crack growth by mesh free BFM. Key Engineering Materials, 2016, 713: 5-9 | [8] | Kumar S, Singh IV, Mishra BK, et al. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. International Journal of Impact Engineering, 2016, 87: 198-211 | [9] | 王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法. 工程力学, 2016, 33(1): 32-38 | [9] | (Wang Zhen, Yu Tiantang. Adaptive multiscale extended finite element method for Modeling three-dimensional crack problems. Engineering Mechanics, 2016, 33(1): 32-38 (in Chinese)) | [10] | 龚迪光, 曲占庆, 李建雄等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究. 岩土力学, 2016, 37(5): 1512-1520 | [10] | (Gong Diguang, Qu Zhanqing, Li Jianxiong, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform. Rock and Soil Mechanics, 2016, 37(5): 1512-1520 (in Chinese)) | [11] | 江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013, 34(6): 586-597 | [11] | (Jiang Shouyan, Du Chenbin. Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013, 34(6): 586-597 (in Chinese)) | [12] | 杨永涛, 徐栋栋, 郑宏. 动载下裂纹应力强度因子计算的数值流形元法. 力学学报, 2014, 46(5): 730-738 | [12] | (Yang Yongtao, Xu Dongdong, Zheng Hong. Evaluation on stress intensity factor at the crack under dynamic load using numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738 (in Chinese)) | [13] | Li W, Zheng H, Sun G. The moving least squares based numerical manifold method for vibration and impact analysis of cracked bodies. Engineering Fracture Mechanics, 2018, 190: 410-434 | [14] | 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347 | [14] | (Zhang Peng, Du Chengbin, Jiang Shouyan. Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese)) | [15] | Bleyer J, Roux-Langlois C, Molinari J F. Dynamic crack propagation with a variational phase-field model: Limiting speed, crack branching and velocity-toughening mechanisms. International Journal of Fracture, 2017, 204(1): 79-100. | [16] | 王理想, 唐德泓, 李世海等. 基于混合方法的二维水力压裂数值模拟. 力学学报, 2015, 47(6): 973-983 | [16] | (Wang Lixiang, Tang Dehong, Li Shihai, et al. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 973-983 (in Chinese)) | [17] | Babuška I, Melenk JM. Partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758 | [18] | Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity based generalized FEMs. Computer Methods in Applied Mechanics and Engineering. 2006, 195: 4768-4782 | [19] | Gupta V, Duarte C A, Babuška I, et al. Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 355-386 | [20] | Babuška I, Banerjee U, Kergrene K. Strongly stable generalized finite element method: Application to interface problems. Computer Methods in Applied Mechanics and Engineering, 2017, 327: 58-92 | [21] | Agathos K, Chatzi E, Bordas S, et al. A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. International Journal for Numerical Methods in Engineering, 2016, 105(9): 643-677 | [22] | Agathos K, Ventura G, Chatzi E, et al. Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering, 2018, 113: 252-276 | [23] | Belytschko T, Chen H, Xu J, et al. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering, 2003, 58: 1873-1905 | [24] | Elguedj T, Gravouil A, Maigre H. An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2297-2317 | [25] | Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63: 631-659 | [26] | Comnescure A, Gravouil A, Gregoire D, et al. XFEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2008, 197(5): 309-318 | [27] | Tian R. Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics and Engineering, 2013, 266: 1-22 | [28] | Tian R, Wen L. Improved XFEM-An extra-DOF free, well- conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 639-658 | [29] | Wen L, Tian R. Improved XFEM: Accurate and robust dynamic crack growth simulation. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 256-285 | [30] | 田荣, 文龙飞. 改进型XFEM综述. 计算力学学报, 2016, 33(4): 469-477 | [30] | (Tian Rong, Wen Longfei. Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016, 33(4): 469-477 (in Chinese)) | [31] | 文龙飞. 改进型扩展有限元法及其并行程序实现. [博士论文]. 北京: 中国科学院大学, 2017 | [31] | (Wen Longfei. Improved extended finite element method and its parallel programming. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese)) | [32] | 王理想, 文龙飞, 王景焘等. 基于改进型XFEM的裂纹分析并行软件实现. 中国科学: 技术科学, 已录用 | [32] | (Wang Lixiang, Wen Longfei, Wang Jingtao, et al. Implementations of parallel software for crack analyses based on the improved XFEM. Scientia Sinica Technologica,Accepted(in Chinese)) | [33] | 刘鹏, 余天堂. 压电材料二维动应力强度因子的扩展有限元计算. 振动与冲击, 2013, 32(13): 76-80 | [33] | (Liu Peng, Yu Tiantang. Dynamic intensity factor computation for two-dimensional piezoelectric media using an extended finit element method. Journal of Vibration and Shock, 2013, 32(13): 76-80 (in Chinese)) | [34] | 刘学聪, 章青, 夏晓舟. 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017, 34(10): 10-18 | [34] | (Liu Xuecong, Zhang Qing, Xia Xiaozhou. A new enrichment function of crack tip in XFEM dynamics by explicit time algrorithm. Engineering Mechanics, 2017, 34(10): 10-18 (in Chinese)) | [35] | 庄茁, 柳占立, 成斌斌等. 扩展有限元法. 北京: 清华大学出版社, 2012 | [35] | (Zhuang Zuo, Liu Zhanli, Cheng Binbin, et al.The Extended Finite Element Method. Beijing: Tsinghua University Press, 2012 (in Chinese)) | [36] | 余天堂. 扩展有限单元法?理论、应用及程序. 北京: 科学出版社, 2014 | [36] | (Yu Tiantang.The Extended Finite Element Method-Theory, Application and Program. Beijing: Science Press, 2014 (in Chinese)) | [37] | Freund LB. Dynamic Fracture Mechanics. Cambridge University Press, 1990 | [38] | Menouillard T, Réthoré J, Combescure A, et al. Efficient explicit time stepping for the extended finite element method. International Journal for Numerical Methods in Engineering, 2006, 68: 911-938 | [39] | Menouillard T, Song JH, Duan QL, et al. Time dependent crack tip enrichment for dynamic crack propagation. International Journal of Fracture, 2010, 162(1-2): 33-49 | [40] | Menouillard T, Belytschko T. Smoothed nodal forces for improved crack propagation modeling in XFEM. International Journal for Numerical Methods in Engineering, 2010, 84: 47-72 | [41] | Gravouil A, Elguedj T, Maigre H. An explicit dynamics extended finite element method. Part 2: Element-by-element stable-explicit/explicit dynamic scheme. Computer Methods in Applied Mechanics and Engineering, 2009, 198(30-32): 2318-2328 | [42] | Liu Z L, Menouillard T, Belytschko T. An XFEM/Spectral element method for dynamic crack propagation. International Journal of Fracture, 2011, 169(2): 183-198 | [43] | Menouillard T, Belytschko T. Dynamic fracture with meshfree enriched XFEM. Acta Mechanica, 2010, 213(1-2): 53-69 | [44] | Kalthoff J F. Modes of dynamic shear failure in solids. International Journal of Fracture, 2000, 101(1-2): 1-31 | [45] | Freund LB. Crack propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 129-140 | [46] | Freund LB, Douglas AS. Influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 1982, 30(1): 59-74 | [47] | Rosakis AJ, Freund LB. Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. Journal of Engineering Materials and Technology, 1982, 104(2): 115-120 | [48] | Réthoré J, Gravouil A, Combescure A. A combined space-time extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 64(2): 260-284 |
|