EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性流体环境下V型悬臂梁结构流固耦合振动特性研究

胡璐 闫寒 张文明 彭志科 孟光

胡璐, 闫寒, 张文明, 彭志科, 孟光. 黏性流体环境下V型悬臂梁结构流固耦合振动特性研究[J]. 力学学报, 2018, 50(3): 643-653. doi: 10.6052/0459-1879-18-028
引用本文: 胡璐, 闫寒, 张文明, 彭志科, 孟光. 黏性流体环境下V型悬臂梁结构流固耦合振动特性研究[J]. 力学学报, 2018, 50(3): 643-653. doi: 10.6052/0459-1879-18-028
Hu Lu, Yan Han, Zhang Wenming, Peng Zhike, Meng Guang. ANALYSIS OF FLEXURAL VIBRATION OF V-SHAPED BEAMS IMMERSED IN VISCOUS FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 643-653. doi: 10.6052/0459-1879-18-028
Citation: Hu Lu, Yan Han, Zhang Wenming, Peng Zhike, Meng Guang. ANALYSIS OF FLEXURAL VIBRATION OF V-SHAPED BEAMS IMMERSED IN VISCOUS FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 643-653. doi: 10.6052/0459-1879-18-028

黏性流体环境下V型悬臂梁结构流固耦合振动特性研究

doi: 10.6052/0459-1879-18-028
基金项目: 国家杰出青年科学基金(11625208)和国家自然科学基金(11572190)资助项目.
详细信息
    作者简介:

    通讯作者: 张文明, 教授, 主要研究方向: 动力学与振动控制.E-mail: wenmingz@sjtu.edu.cn

    通讯作者:

    张文明

  • 中图分类号: O327;

ANALYSIS OF FLEXURAL VIBRATION OF V-SHAPED BEAMS IMMERSED IN VISCOUS FLUIDS

  • 摘要: V型悬臂梁结构在原子力显微镜、微纳机械传感器件中得到了广泛应用, 该结构通常在黏性流体环境下实现精密检测、传感与性能表征,同时也会使得结构的流固耦合振动特性更为复杂, 直接影响器件的动态性能.本文针对V型结构变截面、变刚度等复杂几何特征, 建立了黏性流体环境下V型悬臂梁结构的流固耦合动力学模型, 导出了基于截面孔宽比参数的梁结构的修正水动力函数, 确定了截面孔宽比和频率参数影响下V型悬臂梁结构的水动力函数;理论分析得到了黏性流体中V型梁结构的频率响应特性.同时, 设计了多种不同几何尺寸的V型梁结构, 并在水环境中开展了实验验证, 结果表明, 实验所得频率响应与理论分析结果吻合较好, 验证了V型梁结构水动力函数修正表达式及流固耦合动力学模型.此外, 基于该流固耦合动力学模型, 详细分析了不同流体黏度、V 型梁角度及尺寸变化对耦合系统振动特性的影响.

     

  • [1] Stark RW, Drobek T, Heckl WM. Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy, 2001, 86(1): 207-215
    [2] Hu QQ, Chen LQ. Bifurcation and chaos in atomic force microscope. Chaos Solitons & Fractals, 2007, 33(2): 711-715
    [3] Chen LQ, Lim CW, Hu QQ, et al.Asymptotic analysis of a vibrating cantilever with a nonlinear boundary. Science in China, 2009, 52(9): 1414-1422
    [4] 徐金明, 白以龙.原子力显微镜形貌测量偏差的机理分析及修正方法.力学学报, 2011, 43(1): 112-21
    [4] (Xu Jinming, Bai Yilong. Analysis of topography measurement error in atomic force microscope (AFM) and its revision method. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 112-121 (in Chinese))
    [5] Sader JE, Borgani R, Gibson CT, et al.A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 2016, 87(9): 846-856
    [6] 魏征, 孙岩, 王再冉等.轻敲模式下原子力显微镜的能量耗散.力学学报, 2017, 49(6): 1301-1311
    [6] (Wei Zheng, Sun Yan, Wang Zairan, et al.Energy dissipation in tapping mode atomic force microscopy. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311 (in Chinese))
    [7] Hosseini R, Hamedi M. An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsystem Technologies, 2016, 22(5): 1127-1134
    [8] Litak G, Abadal G, Rysak A, et al.Complex dynamics of a bistable electrically charged microcantilever: Transition from single well to cross well oscillations. Chaos Solitons & Fractals, 2017, 99: 85-90
    [9] Lee GB, Kuo TY, Wu WY. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate. Experimental Thermal and Fluid Science, 2002, 26(5): 435-444
    [10] Steiner H, Keplinger F, Schalko J, et al.Highly efficient passive thermal micro-actuator. Journal of Microelectromechanical Systems, 2015, 24(6): 1981-1988
    [11] Wu S, Liu X, Zhou X, et al.Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosensors & Bioelectronics, 2016, 77: 164-173
    [12] Enikov ET, Kedar SS, Lazarov KV. Analytical model for analysis and design of V-shaped thermal microactuators. Journal of Microelectromechanical Systems, 2005, 14(4): 788-798
    [13] Cleveland JP, Manne S, Bocek D, et al.A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 1993, 64(2): 403-405
    [14] Sader JE, Larson I, Mulvaney P, et al.Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 1995, 66(7): 3789-3798
    [15] Sader JE, Sanelli J A, Adamson BD, et al.Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments, 2012, 83(10): 103705
    [16] Lee HL, Chang WJ, Yang YC. Flexural sensitivity of a V-shaped cantilever of an atomic force microscope. Materials Chemistry and Physics, 2005, 92(2): 438-442
    [17] Lee HL, Chang WJ. Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelectronic Engineering, 2011, 88(11): 3214-3218
    [18] Lee HL, Chang WJ. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory. Micron, 2016, 80: 1-5
    [19] Korayem AH, Hoshiar AK, Badrlou S, et al.A comprehensive model for stiffness coefficients in V-shaped cantilevers. International Journal of Nanoscience and Nanotechnology, 2016, 12(1): 27-36
    [20] Korayem AH, Kianfar A, Korayem MH. Modeling and simulating of V-shaped piezoelectric micro-cantilevers using MCS theory considering the various surface geometries. Physica E : Low-dimensional Systems and Nanostructures, 2016, 84: 268-279
    [21] Korayem MH, Nahavandi A. Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering-shaped geometry and double piezoelectric extended layers in the air and liquid environments. Journal of Sound & Vibration, 2016, 386: 251-264
    [22] Berthold T, Benstetter G, Frammelsberger W, et al.Numerical study of hydrodynamic forces for AFM operations in liquid. Scanning, 2017, 2017: 1-12
    [23] Dufrêne YF, Ando T, Garcia R, et al.Imaging modes of atomic force microscopy for application in molecular and cell biology. Nature Nanotechnology, 2017, 12(4): 295-307
    [24] Wu S, Liu H, Cheng T, et al.Highly sensitive nanomechanical assay for the stress transmission of carbon chain. Sensors & Actuators B Chemical, 2013, 186(9): 353-359
    [25] Wu S, Liu H, Liang XM, et al.Highly sensitive nanomechanical immunosensor using half antibody fragments. Analytical Chemistry, 2014, 86(9): 4271-4277
    [26] Phan CN, Aureli M, Porfiri M. Finite amplitude vibrations of cantilevers of rectangular cross sections in viscous fluids. Journal of Fluids and Structures, 2013, 40(7): 52-69
    [27] 吴应湘, 林黎明, 钟兴福.带有新型涡激振动抑制罩的圆柱体的水动力特性.力学学报, 2016, 48(2): 307-317
    [27] (Wu Yingxiang, Lin Liming, Zhong Xingfu. Investigation in hydrodynamics of a circular cylinder with the new suppressing shroud for vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 307-317 (in Chinese))
    [28] 牛文栋, 王延辉, 杨艳鹏等.混合驱动水下滑翔机水动力参数辨识.力学学报, 2016, 48(4): 813-822
    [28] (Niu Wendong, Wang Yanhui, Yang Yanpeng, et al.Hydrodynamic parameter identification of hybrid-driven underwater glider. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 813-822 (in Chinese))
    [29] Maali A, Hurth C, Boisgard R, et al.Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids. Journal of Applied Physics, 2005, 97(7): 074907
    [30] 白玉川, 冀自青, 徐海珏.摆动河槽水动力稳定性特征分析.力学学报, 2017, 49(2): 274-288
    [30] (Bai Yuchuan, Ji Ziqing, Xu Haijue. Hydrodynamic instability characteristics of laminar flow in a meandering channel with moving boundary. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 274-288 (in Chinese))
    [31] Trivedi C. A review on fluid structure interaction in hydraulic turbines: A focus on hydrodynamic damping. Engineering Failure Analysis, 2017, 77: 1-22
    [32] Tuck E. Calculation of unsteady flows due to small motions of cylinders in a viscous fluid. Journal of Engineering Mathematics, 1969, 3(1): 29-44
    [33] Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998, 84(1): 64-76
    [34] Aureli M, Porfiri M. Low frequency and large amplitude oscillations of cantilevers in viscous fluids. Applied Physics Letters, 2010, 96(16): 164102
    [35] Aureli M, Basaran M, Porfiri M. Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids. Journal of Sound and Vibration, 2012, 331(7): 1624-1654
    [36] Falcucci G, Aureli M, Ubertini S, et al.Transverse harmonic oscillations of laminae in viscous fluids: a lattice Boltzmann study. Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, 2011, 369(1945): 2456-2466
  • 加载中
计量
  • 文章访问数:  2266
  • HTML全文浏览量:  168
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回