EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力诱发界面迁移下晶内孔洞的演化

余文韬 黄佩珍

余文韬, 黄佩珍. 应力诱发界面迁移下晶内孔洞的演化[J]. 力学学报, 2018, 50(4): 828-836. doi: 10.6052/0459-1879-18-015
引用本文: 余文韬, 黄佩珍. 应力诱发界面迁移下晶内孔洞的演化[J]. 力学学报, 2018, 50(4): 828-836. doi: 10.6052/0459-1879-18-015
Yu Wentao, Huang Peizhen. THE EVOLUTION OF INTRAGRANULAR VOIDS UNDER INTERFACE MIGRATION INDUCED BY STRESS MIGRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 828-836. doi: 10.6052/0459-1879-18-015
Citation: Yu Wentao, Huang Peizhen. THE EVOLUTION OF INTRAGRANULAR VOIDS UNDER INTERFACE MIGRATION INDUCED BY STRESS MIGRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 828-836. doi: 10.6052/0459-1879-18-015

应力诱发界面迁移下晶内孔洞的演化

doi: 10.6052/0459-1879-18-015
基金项目: 江苏省自然科学基金(BK20141407)和江苏高校优势学科建设工程资助项目.
详细信息
    作者简介:

    *余文韬, 硕士研究生,主要研究方向: 微结构演化. E-mail: yuwt@nuaa.edu.cn; *黄佩珍, 教授, 博士生导师, 主要研究方向: 工程问题的力学建模与数值仿真. E-mail:pzhuang@nuaa.edu.cn

    通讯作者:

    余文韬,黄佩珍

    余文韬,黄佩珍

  • 中图分类号: O343.1;

THE EVOLUTION OF INTRAGRANULAR VOIDS UNDER INTERFACE MIGRATION INDUCED BY STRESS MIGRATION

  • 摘要: 随着微电子技术的迅猛发展, 集成电路中内连导线的失效问题引起广泛关注. 内连导线内部孔洞萌生、长大、漂移和失稳变形成狭长裂纹, 从而导致电路的开路失效. 这是内连导线失效的常见形式. 而界面迁移是导致微结构形态演化的主要机制之一. 本文基于界面迁移下微结构演化的经典理论和弱解描述, 建立了应力诱发界面迁移下微结构演化的有限单元法, 并验证了算法的可靠性. 对铜内连导线中晶内孔洞的演化进行了数值模拟, 详细分析了应力、线宽及形态比对晶内孔洞演化的影响. 研究结果表明, 椭圆形晶内孔洞存在生长和收缩两种演化分叉趋势. 通过大量数值分析得到了晶内孔洞演化的临界应力σ?c 、临界线宽h?c 和临界形态比βc . 当h??h?c, σ?h? 时, 晶内孔洞会沿长轴长大; 反之, 晶内孔洞会收缩甚至愈合. 此外, 应力β 越大、线宽σ? 越小或形态比h? 越大, 晶内孔洞越易发生长大, 且孔洞面积增大速度越快; β 越小、σ? 越大或h? 越小, 晶内孔洞越易发生收缩, 且孔洞面积减小速度越快.

     

  • [1] 付云伟, 张龙, 倪新华等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析. 力学学报, 2016, 48(1): 154-162
    [1] (Fu Yunwei, Zhang Long, Ni Xinhua, et al.Interface cracking analysis with inclusion interaction in composite ceramic.Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1): 154-162 (in Chinese))
    [2] Liu Z, Yu H.A numerical study on the effect of mobilities and initial profile in thin film morphology evolution.Thin Solid Films, 2006, 513(1): 391-8
    [3] 耿亚南, 蔡宗熙. 内压载荷作用下薄膜椭球的稳定性分析. 力学学报, 2016, 48(5): 1343-1352
    [3] (Geng Yanan, Cai Zongxi.Stability of a pressurized ellipsoidal balloon.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1343-1352 (in Chinese))
    [4] Xia L, Bower AF, Suo Z, et al.A finite element analysis of the motion and evolution of voids due to strain and electromigration induced surface diffusion.Journal of the Mechanics & Physics of Solids, 1997, 45(9): 1473-1493
    [5] 熊骏, 李振环, 朱亚新等. 基于微结构动态演化机制的单晶镍基高温合金晶体塑性本构及其有限元模拟. 力学学报, 2017,49(4): 763-781
    [5] (Xiong Jun, Li Zhenhuan, Zhu Yaxin, et al.Microstructure evolution mechanism based crystal-plasticity constitutive modelfor nickel-based superalloy and its finite element simulation.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 763-781 (in Chinese))
    [6] 吴丰顺, 张金松, 吴懿平等. 集成电路互连引线电迁移的研究进展. 半导体技术, 2004, 29(9): 15-21
    [6] (Wu Fengshun, Zhang Jinsong, Wu Yiping, et al.Progress of electromigration in IC interconnect metallic line.Semiconductor Technology, 2004, 29(9): 15-21 (in Chinese))
    [7] Suzuki T, Nakamura T, Mizushima Y, et al.Stress migration phenomenon in narrow copper interconnects.Journal of Applied Physics, 2007, 101(4): 753
    [8] Ho PS.Motion of inclusion induced by a direct current and a temperature gradient.Journal of Applied Physics, 1970, 41(1): 64-68
    [9] Ho PS, Kwok T.Electromigration in metals.Reports on Progress in Physics, 1989, 52(3): 301
    [10] 张金松, 吴懿平, 王永国等. 集成电路微互连结构中的热迁移. 物理学报, 2010, 59(6): 4395-4402
    [10] (Zhang Jinsong, Wu Yiping, Wang Yongguo, et al.Thermomigration in micro interconnects in integrated circuits.Acta Physica Sinica, 2010, 59(6): 4395-4402 (in Chinese))
    [11] 郭佳惠, 祝六花. 关于超大规模集成电路制造中的应力迁移问题. 电子器件, 2000, 23(4): 262-266
    [11] (Guo Jiahui, Zhu Liuhua.The problem about stress migration in the VLSI manufacture.Chinese Journal of Electron Devices, 2000, 23(4): 262-266 (in Chinese))
    [12] Gan ZH, Shao W, Mhaisalkar SG, et al.Experimental and numerical studies of stress migration in Cu interconnects embedded in different dielectrics.AIP Conference Proceedings, 2006, 817(817): 269-274
    [13] 刘晴, 徐凯宇. 考虑应变能密度的铜互连导线电迁移应力分析. 力学季刊, 2017(2): 359-368
    [13] (Liu Qing, Xu Kaiyu.Electromigration stress analysis of copper.Chinese Quarterly of Mechanics, 2017(2): 359-368 (in Chinese))
    [14] Dong X, Li Z.An analytical solution for motion of an elliptical void under gradient stress field.Applied Physics Letters, 2009, 94, 071909
    [15] Wang Y, Yao Y.A theoretical analysis of the electromigration-induced void morphological evolution under high current density.Acta Mechanica Sinica, 2017, 33: 868-878
    [16] Huang Q, Lilley CM, Divan R.An in situ investigation of electromigration in Cu nanowires.Nanotechnology, 2009, 20(7): 075706
    [17] Maniatty AM, Ni J, Liu Y, et al.Effect of microstructure on electromigration-induced stress.Journal of Applied Mechanics, 2016, 83(1): 13-13
    [18] Lin SK, Liu YC, Chiu SJ, et al.The electromigration effect revisited: Non-uniform local tensile stress-driven diffusion.Scientific Reports, 2017, 7(1): 3082
    [19] Wang H, Li ZH, Sun J.Effects of stress and temperature gradients on the evolution of void in metal interconnects driven by electric current and mechanical stress.Modelling & Simulation in Materials Science & Engineering, 2006, 14(4): 607
    [20] He DN, Huang PZ.A finite-element analysis of intragranular microcracks in metal interconnects due to surface diffusion induced by stress migration.Computational Materials Science, 2014, 87: 65-71
    [21] He DN, Huang PZ.A finite-element analysis of in-grain microcracks caused by surface diffusion induced by electromigration.International Journal of Solids & Structures, 2015, 62: 248-255
    [22] 杜杰锋, 黄佩珍. 电迁移诱发表面扩散下沿晶微裂纹的演化. 固体力学学报, 2017, 38(1): 39-46
    [22] (Du Jiefeng, Huang Peizhen.The evolution of intergranular microcracks due to surface diffusion induced by electromigration.Chinese Journal of Solid Mechanics, 2017, 38(1): 39-46 (in Chinese))
    [23] Suo Z.Motions of microscopic surfaces in materials.Advances in Applied Mechanics, 1997, 33(8): 193-294
    [24] Sun B, Suo Z, Yang W.A finite element method for simulating interface motion—I. Migration of phase and grain boundaries.Acta Materialia, 1997, 45(5): 1907-1915
    [25] Herring C.Surface tension as a motivation for sintering//Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. Berlin, Heidelberg: Springer 1999: 33-69
    [26] Mullins WW.Theory of thermal grooving.Journal of Applied Physics, 1957, 28(3): 333-339
    [27] Prevost JH, Baker TJ, Liang J, et al.A finite element method for stress-assisted surface reaction and delayed fracture.International Journal of Solids & Structures, 2001, 38(30-31): 5185-203
    [28] Huang JM, Yang W.Three-dimensional evolution of interfaces under evaporation-condensation kinetics: A finite-element simulation.Modelling & Simulation in Materials Science & Engineering, 1999, 7(1): 87
    [29] Yu H.Crack nucleation from a single notch caused by stress-dependent surface reactions.International Journal of Solids & Structures, 2005, 42(13): 3852-3866
    [30] Huang PZ Sun J, Li ZH. Evolution of penny-shaped microcracks by interface migration.International Journal of Solids and Structures, 2003, 40(8): 1959-1972
    [31] Huang PZ, Sun J, Li ZH.Axisymmetric finite-element simulation of grain growth behaviour.Modelling & Simulation in Materials Science & Engineering, 2002, 11(1): 41
    [32] Srolovitz DJ.On the stability of surfaces of stressed solids.Acta Metallurgica, 1989, 37(2): 621-625
  • 加载中
计量
  • 文章访问数:  1583
  • HTML全文浏览量:  68
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-07-18

目录

    /

    返回文章
    返回