EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械结合面切向接触阻尼计算模型

王雯 吴洁蓓 高志强 傅卫平 康维超 刘雁鹏

王雯, 吴洁蓓, 高志强, 傅卫平, 康维超, 刘雁鹏. 机械结合面切向接触阻尼计算模型[J]. 力学学报, 2018, 50(3): 633-642. doi: 10.6052/0459-1879-17-425
引用本文: 王雯, 吴洁蓓, 高志强, 傅卫平, 康维超, 刘雁鹏. 机械结合面切向接触阻尼计算模型[J]. 力学学报, 2018, 50(3): 633-642. doi: 10.6052/0459-1879-17-425
Wang Wen, Wu Jiebei, Gao Zhiqiang, Fu Weiping, Kang Weichao, Liu Yanpeng. A CALCULATION MODEL FOR TANGENTIAL CONTACT DAMPING OF MACHINE JOINT INTERFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 633-642. doi: 10.6052/0459-1879-17-425
Citation: Wang Wen, Wu Jiebei, Gao Zhiqiang, Fu Weiping, Kang Weichao, Liu Yanpeng. A CALCULATION MODEL FOR TANGENTIAL CONTACT DAMPING OF MACHINE JOINT INTERFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 633-642. doi: 10.6052/0459-1879-17-425

机械结合面切向接触阻尼计算模型

doi: 10.6052/0459-1879-17-425
基金项目: 国家自然科学基金资助项目(51275407, 51475363).
详细信息
    作者简介:

    通讯作者:王雯, 教授, 主要研究方向: 复杂系统动力学、智能机器人与机电系统测控. E-mail: wangwen@xaut.edu.cn

    通讯作者:

    王雯

  • 中图分类号: TH113;

A CALCULATION MODEL FOR TANGENTIAL CONTACT DAMPING OF MACHINE JOINT INTERFACES

  • 摘要: 针对两粗糙表面在法向力和切向力共同作用下相互接触时结合面切向阻尼的问题进行了研究。首先,根据KE模型对单个微凸体在弹性、弹塑性、塑性变形阶段的切向接触行为进行了分析,获得了微凸体在三个变形阶段的黏滑特性;然后,基于GW统计模型建立了一种在微凸体法向弹性、弹塑性和塑性变形机制基础上,考虑微凸体黏滑摩擦行为的机械结合面切向接触阻尼统计模型;最后,分别讨论了机械结合面的法向预载荷、切向激振频率和切向动态位移幅值对机械结合面切向阻尼的影响。研究表明:结合面切向接触阻尼系数随着结合面法向载荷的增大而增大,随着切向激振频率和切向动态位移幅值的增大而减小;在高频率、大幅值下,结合面切向接触阻尼系数几乎与动态位移幅值和激振频率无关。为了验证模型的准确性,构建了动态切向力作用下的结合面切向阻尼试验,其试验结果与理论仿真变化规律与量级基本一致,从而证明了本文所提出的切向阻尼模型的有效性。

     

  • [1] Ren Y. Identification of ‘effective’ lnear joints using coupling and joint identification techniques. Journal of Vibration & Acoustics, 1998, 120(2): 331-338
    [2] Ibrahim RA, Pettit CL. Uncertainties and dynamic problems of bolted joints and other fasteners. Journal of Sound & Vibration, 2005, 279(3): 857-936
    [3] Burdekin M, Back N, Cowley A. Analysis of the local deformations in machine joints. Journal of Mechanical Engineering Science, 1979, 21(1): 25-32
    [4] Chandrasekar S, Eriten M, Polycarpou AA. An improved model of asperity interaction in normal contact of rough surfaces. Journal of Applied Mechanics, 2013, 80(1): 1025-1036
    [5] Gao Z, Fu W, Wang W, et al.Normal damping model of mechanical joints interfaces considering asperities in lateral contact. Journal of Tribology, 2017, 140(2): 021404-021412
    [6] Jha KK, Suksawang N, Lahiri D, et al.Evaluating initial unloading stiffness from elastic work-of-indentation measured in a nanoindentation experiment. Journal of Materials Research, 2013, 28(6): 789-797
    [7] Kucharski S, Starzynski G. Study of contact of rough surfaces: Modeling and experiment. Wear, 2014, 311(1-2): 167-179
    [8] Li L, Etsion I, Talke FE. Contact area and static friction of rough surfaces with high plasticity index. Journal of Tribology, 2010, 132(3): 031401-031410
    [9] Zhao B, Zhang S, Qiu Z. Analytical asperity interaction model and numerical model of multi-asperity contact for power hardening materials. Tribology International, 2015, 92(1), 57-66
    [10] 傅卫平, 娄雷亭, 高志强等. 机械结合面法向接触刚度和阻尼的理论模型. 机械工程学报, 2017, 53(9), 73-82
    [10] (Fu Weiping, Lou Leiting, Gao zhiqiang, et al. Theoretical model for the contact stiffness and damping of mechanical joint surface. Journal of Mechanical Engineering, 2017, 53(9): 73-82 (in Chinese))
    [11] 王雯, 吴洁蓓, 傅卫平等. 机械结合面法向动态接触刚度理论模型与试验研究. 机械工程学报, 2016, 52(13): 123-130
    [11] (Wang Wen, Wu jiebei, Fu Weiping, et al. Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces. Journal of Mechanical Engineering, 2016, 52(13): 123-130 (in Chinese))
    [12] Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechined, 1953, 20(3): 327-344
    [13] 王东, 徐超. 一种考虑粗糙结合面切向黏滑摩擦模型. 机械工程学报, 2014, 50(13): 129-134
    [13] (Wang Dong, Xu Chao. A tangential stick-slip friction model for rough interface. Journal of Mechanical Engineering, 2014, 50(13): 129-134 (in Chinese))
    [14] 张学良, 王南山, 温淑花等. 机械结合面切向接触阻尼能量耗散弹塑性分形模型. 机械工程学报, 2013, 49(12): 43-49
    [14] (Zhang Xueliang, Wang Nanshan, Wen Suhua, et al.Elastoplastic fractal model for tangential contact damping energy dissipation of machine joint interfaces. Journal of Mechanical Engineering, 2013, 49(12): 43-49 (in Chinese))
    [15] 姜来, 张学良, 陈永会等. 固定结合面切向接触阻尼分形模型. 太原科技大学学报, 2014, 35(5): 380-385
    [15] (Jiang Lai, Zhang Xueliang, Chen Yonghui, et al. A fractal model of the tangential contact damping on fixed joint surfaces. Journal of Taiyuan University of Science and Technology, 2014, 35(5): 380-385 (in Chinese))
    [16] 李小彭, 王伟, 赵米鹊等. 考虑摩擦因素影响的结合面切向接触阻尼分形预估模型及其仿真. 机械工程学报, 2012, 48(23): 46-50
    [16] (Li Xiaopeng, Wang Wei, Zhao Mique, et al. Fractal prediction model for tangential contact damping of joint surface considering friction factors and its imulation, Journal of Mechanical Engineering 2012, 48(23): 46-50 (in Chinese))
    [17] Zhang X, Wang N, Lan G, et al.Tangential damping and its dissipation factor models of joint interfaces based on fractal theory with simulations. Journal of Tribology, 2014, 136(1): 011704-011716
    [18] Fujimoto T, Kagami J, Kawaguchi T, et al.Micro-displacement characteristics under tangential force. Wear, 2000, 241(2): 136-142
    [19] Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319
    [20] 赵永武, 吕彦明, 蒋建忠. 新的粗糙表面弹塑性接触模型. 机械工程学报, 2007, 43(3): 95-101
    [20] (Zhao Yongwu, Lü Yanming, Jiang JianZhong. New elastic-plastic model for the contact of rough surfaces. Journal of Mechanical Engineering, 2007, 43(3): 95-101 (in Chinese))
    [21] Gorbatikh L, Popova M. Modeling of a locking mechanism between two rough surfaces under cyclic loading. International Journal of Mechanical Sciences, 2006, 48(9): 1014-1020
    [22] Kogut L, Etsion I. A finite element based elastic-plastic model for the contact of rough surfaces. Modelling and Simulation in Engineering, 2011, 2011(3): 383-390
    [23] Abbott EJ, Firestone FA. Specifying surface quality-A method on accurate measurement and comparison. Mechanical Engineering ASME, 1933, 55(7): 569-572
    [24] 温淑花, 张学良, 陈永会等. 结合面切向接触等效黏性阻尼分形模型. 西安交通大学学报, 2017, 51(1): 1-8
    [24] (Wen Suhua, Zhang Xueliang, Chen Yonghui, et al.Fractal model of equivalent viscous damping for tangential contact in joint interfaces. Journal of Xi’an Jiaotong University, 2017, 51(1): 1-8 (in Chinese))
    [25] 蔡力钢, 杨成, 赵永胜等. 基于接触表面非均匀压强分布的栓接结合部动力学模型. 北京工业大学学报, 2016, 42(11): 1609-1616
    [25] (Cai Ligang,Yang Cheng, Zhao Yongsheng, et al.Dynamics model of bolted joint based on uneven pressure distribution of the surface. Journal of Beijing University of Technology, 2016, 42(11): 1609-1616 (in Chinese))
    [26] 吴波, 王增全, 王旭兰等. 机械结合面动态特性测试与仿真. 机械科学与技术, 2016(2): 320-324
    [26] (Wu Bo, Wang Zengquan, Wang Xulan, et al. Test and simulation of dynamic characteristics of joint interface in machine. Mechanical Science and Technology for Aerospace Engineering, 2016(2): 320-324 (in Chinese))
    [27] 戴德沛. 阻尼减振降噪技术. 西安: 西安交通大学出版社, 1986.
    [27] (Dai Depei.Damping and Noise Reduction Technology. Xi’an: Xi’an Jiaotong University Press, 1986 (in Chinese))
  • 加载中
计量
  • 文章访问数:  2317
  • HTML全文浏览量:  195
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回