EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞内吞纳米颗粒药物的数值模拟研究

刘心悦 龚晓波 黄华雄

刘心悦, 龚晓波, 黄华雄. 细胞内吞纳米颗粒药物的数值模拟研究[J]. 力学学报, 2018, 50(2): 438-445. doi: 10.6052/0459-1879-17-411
引用本文: 刘心悦, 龚晓波, 黄华雄. 细胞内吞纳米颗粒药物的数值模拟研究[J]. 力学学报, 2018, 50(2): 438-445. doi: 10.6052/0459-1879-17-411
Liu Xinyue, Gong Xiaobo, Huang Huaxiong. A NUMERICAL STUDY ON ENDOCYTOSIS OF NANOPARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 438-445. doi: 10.6052/0459-1879-17-411
Citation: Liu Xinyue, Gong Xiaobo, Huang Huaxiong. A NUMERICAL STUDY ON ENDOCYTOSIS OF NANOPARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 438-445. doi: 10.6052/0459-1879-17-411

细胞内吞纳米颗粒药物的数值模拟研究

doi: 10.6052/0459-1879-17-411
基金项目: 国家自然科学基金资助项目(11372191,11232010).
详细信息
    作者简介:

    null

    作者简介:龚晓波,副教授,主要研究方向:生物力学、环境流体力学. E-mail: x.gong@sjtu.edu.cn.

  • 中图分类号: O302,R914.2;

A NUMERICAL STUDY ON ENDOCYTOSIS OF NANOPARTICLES

  • 摘要: 受体介导的内吞是细胞与外界物质交换的常见方式. 采用配体修饰表面的纳米脂质体颗粒,将药物有针对性地投放到肿瘤细胞 以提高药物传输的效率,是药物传 输系统设计中的核心问题之一. 本文假设内吞是准静态过程,采用三维数学模型来模拟球状纳米颗粒的内吞,建立了包含绑定键的系统变形能方程,通过求 解能量方程的最小值,得到药物在每个内吞包裹阶段的变形以及药物的被动内吞所需最小能量,分析不同药物半径对内吞所 需最小能量的影响. 研究表明,细胞膜变形能与绑定键变形能占总能量的绝大部分,各组分随着包裹区域增加均有变化;在给定细胞膜和药物颗 粒的硬度、绑定键强度等物理特性下存在最优药物尺寸,使得内吞过程中总能耗最小;在药物内吞进行的后期,包裹区域边 缘的绑定键因伸长过大发生断裂,影响内吞的顺利完成. 本研究为受体介导的高效药物设计提供了理论支撑.

     

  • [1] Silverstein SC, Steinman RM, Cohn ZA.Endocytosis.Ann Rev Biochem,1977,46: 669-722
    [2] Wileman T, Harding C, Stahl P.Recptor-mediated endocytosis.Biochemical Journal, 1985, 232(1): 1-14
    [3] Higgins MK, Mcmahon HT.Snap-shots of clathrin-mediated endocytosis.Trends in Biochemical Sciences, 2002, 27(5): 257-263
    [4] Goldstein JL, Anderson RG, Brown MS.Coated pits, coated vesicles, and receptor-mediated endocytosis.Nature, 1979, 279(5715): 679-685
    [5] Cann AJ.Principles of Molecular Virology. San Diego: Academic,1997
    [6] Kihlström E, Nilsson L.Endocytosis of salmonella typhimurium 395 MS and MR10 by HeLa cells.APMIS, 2010, 85B(5): 322-328
    [7] Tortorella S, Karagiannis TC.Transferrin receptor-mediated endocytosis: A useful target for cancer therapy.Journal of Membrane Biology, 2014, 247(4): 291-307
    [8] Tanaka T, Shiramoto S, Miyashita M.Tumor targeting based on the effect of enhanced permeability and retention(EPR) and the mechanism of receptor-mediated endocytosis(RME).International Journal of Pharmaceutics, 2004, 277(1-2): 39
    [9] Zhang S, Gao H, Bao G.Physical principles of nanoparticle cellular endocytosis.Acs Nano, 2015, 9(9): 8655
    [10] Gao HJ, Shi WD, Lambert B Freund.Mechanics of receptor-mediated endocytosis.Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9469
    [11] Yi X, Shi X, Gao H.Cellular uptake of elastic nanoparticles.Physical Review Letters, 2011, 107(9): 098101
    [12] Decuzzi P, Ferrari M.The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles.Biomaterials, 2007, 28(18): 2915
    [13] Li L, Liu XJ, Zhou YH.On resistance to virus entry into host cell.Biophysical Journal, 2012, 102(9): 2230-2233
    [14] Wang J, Long L.Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.Journal of the Royal Society Interface, 2015, 12(102): 20141023
    [15] Li L, Wang J.Creep effect on cellular uptake of viral particles//CCTAM, 2013
    [16] Helfrich W.Elastic properties of lipid bilayers: theory and possible experiments.Zeitschrift Fur Naturforschung Teil C Biochemie Biophysik Biologie Virologie, 1973, 28(11-12): 693-703
    [17] Skalak R, Tozeren A, Zarda RP.Strain energy function of red blood cell membranes.Biophysical Journal, 1973, 13(3): 245-264
    [18] 许菁, 王骁龙, 刘筠乔等. 红细胞力学特性对血小板近壁运动的影响. 力学学报, 2013, 45(6): 974-981
    [18] (Xu Jing, Wang Xiaolong, Liu Xiaoqiao.Micro-scale numerical study of the effect of erythrocyte mechanical properties on the near-wall motion of platelet.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 974-981 (in Chinese))
    [19] David F, Leibler S.Vanishing tension of fluctuating membranes.Journal of Physics B Atomic & Molecular Physics, 1991, 1(8): 959-976
    [20] Dembo M.On peeling an adherent cell from a surface. In: Lectures in Mathematics in Life Sciences, Some Mathematical Problems in Biology. Providence, RI: American Mathematical Society, 1994: 51-77
    [21] Hochmuth RM, Evans CA, Wiles HC, et al.Mechanical measurement of red cell membrane thickness.Science, 1983, 220(4592): 101
    [22] 李卫卫, 杨庆生, 刘志远. 血红细胞力学性能的纳米压痕实验和有限元模拟. 力学学报, 2012, 44(3): 614-621
    [22] (Li Weiwei, Yang Qingsheng, Liu Zhiyuan.Nanoindentation experiment and finite element simulation for biomechanical behavior of red blood cell.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 614-621 (in Chinese))
    [23] Wong JY, Zalipsky S.Direct measurement of a tethered ligand-receptor interaction potential.Science, 1997, 275(5301): 820
    [24] Ros R, Schwesinger F, Anselmetti D.Antigen binding forces of individually addressed single-chain Fv antibody molecules.Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(13): 7402
    [25] Sun J, Zhang L, Wang J, et al.Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake.Advanced materials, 2015, 27(8): 1402-1407
    [26] Chithrani BD, Ghazani AA, Chan CW.Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Letters, 2006, 6(4): 662
    [27] Deserno M, Bickel T.Wrapping of a spherical colloid by a fluid membrane.EPL, 2012, 62(62): 767
    [28] Deserno M.Elastic deformation of a fluid membrane upon colloid binding.Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(1): 031903
    [29] Moy VT, Florin EL, Gaub HE.Intermolecular forces and energies between ligands and receptors.Science, 1994, 266(5183): 257-259
    [30] Fotticchia I, Guarnieri D, Fotticchia T.Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.Colloids & Surfaces B Biointerfaces, 2016, 144: 250-256
  • 加载中
计量
  • 文章访问数:  1359
  • HTML全文浏览量:  131
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回