EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑破损-安全的连续体结构拓扑优化ICM方法

彭细荣 隋允康

彭细荣, 隋允康. 考虑破损-安全的连续体结构拓扑优化ICM方法[J]. 力学学报, 2018, 50(3): 611-621. doi: 10.6052/0459-1879-17-366
引用本文: 彭细荣, 隋允康. 考虑破损-安全的连续体结构拓扑优化ICM方法[J]. 力学学报, 2018, 50(3): 611-621. doi: 10.6052/0459-1879-17-366
Peng Xirong, Sui Yunkang. ICM METHOD FOR FAIL-SAFE TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621. doi: 10.6052/0459-1879-17-366
Citation: Peng Xirong, Sui Yunkang. ICM METHOD FOR FAIL-SAFE TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621. doi: 10.6052/0459-1879-17-366

考虑破损-安全的连续体结构拓扑优化ICM方法

doi: 10.6052/0459-1879-17-366
基金项目: 国家自然科学基金(11672103)和湖南省自然科学基金(2016JJ6016)资助项目.
详细信息
    作者简介:

    通讯作者:隋允康 , 教授, 主要研究方向:结构优化. E-mail:ysui@bjut.edu.cn

    作者简介:彭细荣,副教授,主要研究方向:结构优化. E-mail:pxr568@163.com

    通讯作者:

    隋允康

  • 中图分类号: O343.1;

ICM METHOD FOR FAIL-SAFE TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES

  • 摘要: 本文瞄准连续体在破损-安全考虑下的结构拓扑优化问题,旨在克服传统模型求解所得最终构型存在的弊病,避免结构因缺乏合理的冗余结构而敏感于局部破坏,实现破损-安全的目标. 首先,梳理了以往虽然用到却并不明晰的4个概念:结构局部破损模式、结构局部破损区域、结构破损状况、结构破损状况的预估分布. 之后,基于独立连续映射(ICM)方法,对该问题建立了力学性能约束下结构体积极小化的模型. 建立目标函数时,利用Minimax的概念将可能出现的结构破损状况对应的所有结构体积目标转化为原结构的唯一结构体积目标,克服了多目标问题的困难. 建立近似约束函数时,将可能出现的所有结构破损状况对应的力学性能的约束皆考虑进去,既能处理载荷单工况也能处理载荷多工况. 最后,以位移约束为例,建立了优化模型并求解. 单工况及多工况位移约束拓扑优化算例验证了算法的有效性. 结果表明:本方法相比于不考虑破损-安全的拓扑优化设计,得到的最优拓扑更复杂,体积比更大即所用材料更多,亦即最优结构具有更多的冗余,此正是考虑破损-安全设计原则的结果. 本文的研究对于航空、航天、其他水、陆等领域运载工具以及其他工程结构在意外破坏、战争创伤或恐怖袭击下的结构设计,乃是非常重要的进展.

     

  • [1] Niu MCY. Airframe Structural Design.Hongkong: Conmilit Press Ltd., 1988
    [2] Niu MCY.Airframe Stress Analysis and Sizing. Hongkong: Conmilit Press Ltd., 1997
    [3] Zdeněk P Bažant, Yong Z. Why does the world trade center collapse? — Simple analysis.International Journal of Structural Stability and Dynamics, 2012, 1(4): 603-615
    [4] Melosh RJ, Johnson JR, Luik R.Structural survivability analysis//Second Conference on Matrix Methods in Structural-Mechanics, WPAFB, Ohio, 1968
    [5] Bendsøe MP, Sigmund O. Topology Optimization - Theory, Methods and Applications. Berlin: Springer, 2004
    [6] Deaton J, Grandhi RV.A survey of structural and multidisciplinary continuum topology optimization: Post 2000.Struct Multidiscip Optim, 2014, 49(1): 1-38
    [7] Sun PF, Arora JS, Haug EJ.Fail-safe optimal design of structure.Engineering Optimization, 1976, 2(1): 43-53
    [8] Arora J, Govil A, Haskell D.Optimal design of large structures for damage tolerance.AIAA Journal, 1980, 18(5): 563-570
    [9] Nguyen DT, Arora JS.Fail-safe optimal design of complex structures with substructures.Journal of Mechanical Design, 1982, 104(4): 861-868
    [10] Feng Y.The theory of structural redundancy and its effect on structural design.Computers & Structures, 1988, 28(1): 15-24
    [11] Feng Y, Moses F.Optimum design, redundancy and reliability of structural systems.Computers & Structures, 1986, 24(2): 239-251
    [12] Marhadi K, Venkataraman S, Wong S.Load redistribution mechanism in damage tolerant and redundant truss structure.Structural and Multidisciplinary Optimization, 2011, 44(2): 213-233
    [13] Marhadi K, Venkataraman S.Surrogate measures to optimize structures for robust and predictable progressive failure.Structural and Multidisciplinary Optimization, 2009, 39(3): 245-261
    [14] 杜剑明,郭旭. 基于鲁棒性优化的桁架结构失效-安全设计. 力学学报, 2011, 43(4): 725-730
    [14] (Du Jianming, Guo Xu.Fail-safe optimal design of truss structures based on robust optimization.Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 725-730 (in Chinese))
    [15] Bendsøe M, D'${\imath}$az A. A method for treating damage related criteria in optimal topology design of continuum structures.Structural and Multidisciplinary Optimization, 1998, 16(2-3): 108-115
    [16] Achtziger W, Bendsøe M.Optimal topology design of discrete structures resisting degradation effects.Structural and Multidisciplinary Optimization, 1999, 17(1): 74-78
    [17] Jansen M, Lombaert G, Schevenels M, et al.Topology optimization of fail-safe structures using a simplified local damage model.Structural and Multidisciplinary Optimization, 2013, 49(4): 657-666
    [18] Zhou M, Fleury R.Fail-safe topology optimization.Structural and Multidisciplinary Optimization, 2016, 54(7): 1225-1243
    [19] Olhoff N.Multicriterion structural optimization via bound formulation and mathematical programming.Struct Optim, 1989, 1: 11-17
    [20] 彭细荣. 结构刚度优化问题模型比较研究. 湖南城市学院学报(自然科学版), 2016, 25(1): 1-4
    [20] (Peng Xirong.A comparative study on models of structural stiffness optimization problems.Journal of Hunan City University (Natural Science), 2016, 25(1): 1-4 (in Chinese))
    [21] 彭细荣, 隋允康. 对连续体结构拓扑优化合理模型的再探. 固体力学学报, 2016, 37(2): 181-191
    [21] (Peng Xirong, Sui Yunkang.Further discussion on rational topology optimization model of continuum structures.Chinese Journal of Solid Mechanics, 2016, 37(2): 181-191 (in Chinese))
    [22] 隋允康, 彭细荣. 结构拓扑优化ICM方法的改善. 力学学报, 2005, 37(2): 190-198
    [22] (Sui Yunkang, Peng Xirong. The improvement for the ICM method of structural topology optimization. Acta Mechanica Sinica, 2005, 37(2): 190-198(in Chinese))
    [23] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法. 北京: 科学出版社, 2013
    [23] (Sui Yunkang, Ye Hongling.Continuum Topology Optimization Methods ICM. Beijing: Science Press, 2013 (in Chinese))
    [24] 隋允康, 彭细荣.求解一类可分离凸规划的对偶显式模型DP-EM方法. 力学学报,2017, 49(5): 1135-1143
    [24] (Sui Yunkang, Peng Xirong.A dual explicit model based DP-EM method for solving a class separable convex programming.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1135-1143 (in Chinese))
    [25] Andreassen E, Clausen A, Lazarov BS, et al.Efficient topology optimization in MATLAB using 88 lines of code.Structural Multidisciplinary Optimization, 2011, 43(1): 1-16
  • 加载中
计量
  • 文章访问数:  1849
  • HTML全文浏览量:  254
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-07
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回