EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质--自由流界面应力跳跃条件下流动特性解析解

李琪 赵一远 胡鹏飞

李琪, 赵一远, 胡鹏飞. 多孔介质--自由流界面应力跳跃条件下流动特性解析解[J]. 力学学报, 2018, 50(2): 415-426. doi: 10.6052/0459-1879-17-357
引用本文: 李琪, 赵一远, 胡鹏飞. 多孔介质--自由流界面应力跳跃条件下流动特性解析解[J]. 力学学报, 2018, 50(2): 415-426. doi: 10.6052/0459-1879-17-357
Li Qi, Zhao Yiyuan, Hu Pengfei. ANALYTICAL SOLUTION FOR POROUS-FLUID FLOW CHARACTERISTICS WITH STRESS JUMP INTERFACIAL CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 415-426. doi: 10.6052/0459-1879-17-357
Citation: Li Qi, Zhao Yiyuan, Hu Pengfei. ANALYTICAL SOLUTION FOR POROUS-FLUID FLOW CHARACTERISTICS WITH STRESS JUMP INTERFACIAL CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 415-426. doi: 10.6052/0459-1879-17-357

多孔介质--自由流界面应力跳跃条件下流动特性解析解

doi: 10.6052/0459-1879-17-357
基金项目: 国家自然科学基金资助项目(41702250).
详细信息
    作者简介:

    null

    作者简介:李琪,副教授,主要研究方向:流体动力特性,强化传热传质. E-mail: liqi_1015@163.com

  • 中图分类号: O35;

ANALYTICAL SOLUTION FOR POROUS-FLUID FLOW CHARACTERISTICS WITH STRESS JUMP INTERFACIAL CONDITION

  • 摘要: 对非对称多孔介质--自由流复合通道内多孔介质内部及多孔介质与自由流体界面处复杂质量、动量输运特性进行研究. 在多孔介质区采用Brinkman-extended Darcy模型并结合速度连续,剪切应力跳跃的界面条件对此复合通道内流体的传递现象进行求解,提出了考虑界面应力跳跃时非对称复合通道各区域流体运动速度及摩擦系数的解析式,分析了界面应力跳跃系数,达西数及无量纲多孔层偏心厚度对流体速度及摩擦系数的影响. 结果表明:改变界面性质可在一定条件下明显控制各区域流体速度分布;在达西数、多孔层偏心厚度一定情况下,界面应力系数的增大会使界面流速减小,而使流体摩擦系数增大,特别是界面应力系数小于0的情况下变化更明显,此时若不考虑界面应力系数则会造成较大误差. 当界面应力系数及多孔层偏心厚度均为较小负数值时,改变多孔层偏心厚度对界面速度的影响要大于改变界面应力系数的情况;而当界面应力系数及多孔层偏心厚度为较大正数值时,情况则相反. 较大达西数下,界面应力系数及多孔层偏心厚度对流体摩擦系数的影响均较大,继续减小达西数至一定程度时,界面应力系数对流体摩擦系数的影响可忽略不计而认为只与多孔层偏心厚度相关,且对较大多孔层偏心厚度更敏感.

     

  • [1] Beavers GS, Joseph DD.Boundary conditions at a naturally permeable wall.Journal of Fluid Mechanics, 1967, 30(01): 197-207
    [2] Sahraoui M, Kaviany M.Slip and no-slip velocity boundary conditions at interface of porous, plain media.International Journal of Heat & Mass Transfer, 1992, 35(4): 927-943
    [3] Chang MH, Chen F, Straughan B.Instability of Poiseuille flow in a fluid overlying a porous layer. Journal of Fluid Mechanics, 2006, 564: 287-303
    [4] Cao Y, Gunzburger M, Hua F, et al.Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition.Communications in Mathematical Sciences, 2010, 8(1): 1-25
    [5] Cao Y, Gunzburger M, Hu X, et al.Finite element approximations for stokes-darcy flow with beavers-joseph interface conditions.Siam Journal on Numerical Analysis, 2010, 47(6): 4239-4256
    [6] He X, Li J, Lin Y, et al.A domain decomposition method for the steady-state navier-stokes-darcy model with beavers-joseph interface condition. Siam Journal on Scientific Computing, 2015, 37(5): S264-S290
    [7] Neale G, Nader W.Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium.The Canadian Journal of Chemical Engineering, 1974, 52(4): 475-478
    [8] Vafai K, Thiyagaraja R.Analysis of flow and heat transfer at the interface region of a porous medium. International Journal of Heat and Mass Transfer, 1987, 30(7): 1391-1405
    [9] Vafai K, Kim SJ.Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution.International Journal of Heat and Fluid Flow, 1990, 11(3): 254-256
    [10] Ucar E, Mobedi M, Pop I.Effect of an inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer.Transport in Porous Media, 2013, 98(1): 35-57
    [11] Shokouhmand H, Jam F, Salimpour MR.The effect of porous insert position on the enhanced heat transfer in partially filled channels.International Communications in Heat and Mass Transfer, 2011, 38(8): 1162-1167
    [12] Cekmer O, Mobedi M, Ozerdem B, et al.Fully developed forced convection in a parallel plate channel with a centered porous layer.Transport in Porous Media, 2012, 93(1): 179-201
    [13] Ochoa-Tapia JA, Whitaker S.Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development.International Journal of Heat and Mass Transfer, 1995, 38(14): 2635-2646
    [14] Whitaker S.The Forchheimer equation: A theoretical development.Transport in Porous media, 1996, 25(1): 27-61
    [15] Ochoa-Tapia JA, Whitaker S.Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment.International Journal of Heat and Mass Transfer, 1995, 38(14): 2647-2655
    [16] Kuznetsov AV.Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium.Applied Scientific Research, 1996, 56(1): 53-67
    [17] Tilton N, Cortelezzi L.The destabilizing effects of wall permeability in channel flows: A linear stability analysis. Physics of Fluids(1994-present), 2006, 18(5): 051702
    [18] Tilton N, Cortelezzi L.Linear stability analysis of pressure-driven flows in channels with porous walls.Journal of Fluid Mechanics, 2008, 604: 411-445
    [19] Li Q, Lei HY, Dai CS.Linear stability of a fluid channel with a porous layer in the center.Acta Mechanica Sinica, 2014, 30(1): 28-36
    [20] Dai C, Li Q, Lei H.Instability of Poiseuille flow in a channel filled with multilayer porous media. Journal of Porous Media, 2015, 18(2): 165-177
    [21] Whitaker S.The forchheimer equation: A theoretical development.Transport in Porous Media, 1996, 25(1): 27-61
    [22] Das DB, Nassehi V, Wakeman RJ.A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions.Advances in Environmental Research, 2002, 7(1):35-58
    [23] Tan H, Pillai KM.Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface.Computers & Fluids, 2009, 38(6):1118-1131
    [24] Yu P, Lee TS, Zeng Y, et al.A numerical method for flows in porous and homogenous fluid domains coupled at the interface by stress jump.International Journal for Numerical Methods in Fluids, 2010, 53(11): 1755-1775
    [25] 王丽. 部分填充多孔介质复合腔体内流体流动及传热传质的研究. [硕士论文]. 济南:山东建筑大学, 2010
    [25] (Wang Li.Convective heat and Mass transfer in a complex cavity partially filled with porous medium. [Master Thesis]. Jinan: Shandong Construction University, 2010 (in Chinese))
    [26] 刘芳. 多孔介质与流体空间交界面滑移效应及其影响机理. [博士论文]. 济南:山东大学, 2011
    [26] (Liu Fang.The interfacial slip effect and its influencing mechanism between a porous medium and fluid region. [PhD Thesis]. Jinan: Shandong University, 2011(in Chinese))
    [27] 戴传山, 李琪, 雷海燕. 考虑非达西效应的多孔介质与自由流体多层泊松流求解问题. 岩石力学与工程学报, 2015, 34(s1): 3455-3459
    [27] (Dai Chuanshan, Li Qi, Lei Haiyan.Solution for the poiseuille flow in a fluid channel with a porous media insert by considering non-Darcy effects.Chinese Journal of Rock Mechanics and Engineering, 2015, 34(s1): 3455-3459 (in Chinese))
    [28] Huang P, Cai M, Wang F.A Newton type linearization based two grid method for coupling fluid flow with porous media flow.Applied Numerical Mathematics, 2016, 106: 182-198
    [29] Yadollahi-Farsani H, Frakes D, Herrmann M. Geometry based method for simulating fluid flow through heterogeneous porous media. US20170098019[P/OL].2017-04-06
    [30] 孟旭辉, 王亮, 郭照立. 多孔介质中流固作用力的动量交换计算. 力学学报, 2014, 46(4): 525-532
    [30] (Meng Xuhui, Wang Liang, Guo Zhaoli.Forced evaluation using momentum-exchange method in porous media.Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 525-532(in Chinese))
    [31] Breugem WP.The effective viscosity of a channel-type porous medium.Physics of Fluids, 2007, 19(10): 103104
    [32] Givler RC, Altobelli SA.A determination of the effective viscosity for the Brinkman-Forchheimer flow model.Journal of Fluid Mechanics, 1994, 258(258): 355-370
    [33] Al-Azmi BS.Analysis of transport models and computation algorithms for flow through porous media. [PhD Thesis]. Ohio: The Ohio State University, 2003
    [34] Taylor GI.A model for the boundary condition of a porous material. Part 1.Journal of Fluid Mechanics, 1971, 49(2): 319-326
    [35] Richardson S.A model for the boundary condition of a porous material. Part 2. Journal of Fluid Mechanics, 1971, 49(2): 327-336
  • 加载中
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  154
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回