EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维稳定流形的自适应推进算法

袁国强* 李颖晖

袁国强*, 李颖晖. 二维稳定流形的自适应推进算法[J]. 力学学报, 2018, 50(2): 405-414. doi: 10.6052/0459-1879-17-353
引用本文: 袁国强*, 李颖晖. 二维稳定流形的自适应推进算法[J]. 力学学报, 2018, 50(2): 405-414. doi: 10.6052/0459-1879-17-353
Yuan Guoqiang*, Li Yinghui. ADAPTIVE FRONT ADVANCING ALGORITHM FOR COMPUTING TWO-DIMENSIONAL STABLE MANIFOLDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 405-414. doi: 10.6052/0459-1879-17-353
Citation: Yuan Guoqiang*, Li Yinghui. ADAPTIVE FRONT ADVANCING ALGORITHM FOR COMPUTING TWO-DIMENSIONAL STABLE MANIFOLDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 405-414. doi: 10.6052/0459-1879-17-353

二维稳定流形的自适应推进算法

doi: 10.6052/0459-1879-17-353
基金项目: 基金:国家973项目(2015CB755805)和国家自然科学基金项目(61374145)资助.
详细信息
  • 中图分类号: O193;

ADAPTIVE FRONT ADVANCING ALGORITHM FOR COMPUTING TWO-DIMENSIONAL STABLE MANIFOLDS

  • 摘要: 稳定和不稳定流形是研究动力系统全局特性的重要工具. 一般系统的稳定和不稳定流形的曲率在全局范围内会有明显变化,应根据流形曲率的变化采用不同尺寸的网格单元计算全局流形. 然而在现有二维流形算法中,流形网格单元的尺寸在全局范围内是统一的. 为持续有效地计算全局稳定流形,提高计算网格对流形曲率变化的适应性. 本文在偏微分方程算法的基础上提出一种二维稳定流形的自适应推进算法. 该算法的基本思想是根据稳定流形曲率的变化自适应地调整网格单元的尺寸. 该算法首先在系统的稳定特征子空间中确定稳定流形的一个初始估计,该初始估计的网格单元尺寸设置为初始大小. 然后根据稳定流形网格前沿的曲率特点自适应地产生新的备选网格单元,继而根据相切性条件更新备选点的坐标,并将距离平衡点最近的备选点接受为已知点,最后更新稳定流形网格的前沿并自适应地产生新的备选网格单元,通过这个迭代过程使流形网格自适应地向前推进. 本文算法通过引入流形单元尺寸自适应,成功实现了洛伦兹流形和类球面流形的计算,并与偏微分方程算法进行了对比,结果表明自适应推进算法的流形计算单元的尺寸可在全局范围内根据流形曲率自适应地调整. 利用自适应推进算法计算二维稳定流形,可实现稳定流形的自适应推进.

     

  • [1] Guckenheimer J, Krauskopf B, Osinga HM, et al.Invariant manifolds and global bifurcations.Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(9): 097604
    [2] 贾蒙. 高维非线性映射系统的不稳定流形计算方法研究. 振动与冲击, 2017, 36(17): 262-266
    [2] (Jia Meng.Computation method for unstable manifold of hénon map.Journal of Vibration and Shock, 2017, 36(17): 262-266 (in Chinese))
    [3] 郑丹丹, 罗建军, 张仁勇等. 基于混合Lie算子辛算法的不变流形计算. 力学学报, 2017, 49(5): 1126-1134
    [3] (Zheng Dandan, Luo Jianjun, Zheng Renyong, et al.Computation of invariant manifold based on symplectic algorithm of mixed Lie operator.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1126-1134 (in Chinese))
    [4] Qu L, Li YH, Xu HJ, et al.Aircraft nonlinear stability analysis and multidimensional stability region estimation under icing conditions.Chinese Journal of Aeronautics, 2017, 30(3): 976-982
    [5] 贾建华, 吕敬, 王琪. 带脉冲的三维引力辅助变轨研究. 力学学报, 2016, 48(2): 437-446
    [5] (Jia Jianhua, Lü Jing, Wang Qi.Powered gravity assist in three dimensions.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 437-446 (in Chinese))
    [6] 李渊, 邓子辰, 叶学华等. 基于辛理论的载流碳纳米管能带分析. 力学学报, 2016, 48(1): 135-139
    [6] (Li Yuan, Deng Zichen, Ye Xuehua, et al.Analysing the wave scattering in single-walled carbon nanotube conveying fluid based on the symplectic theory.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 135-139 (in Chinese))
    [7] 钱霙婧, 翟冠峤, 张伟. 基于多项式约束的三角平动点平面周期轨道设计方法. 力学学报, 2017, 49(1): 154-164
    [7] (Qian Yingjing, Zhai Guanqiao, ZhangWei. Planar periodic orbit construction around the triangular libration points based on polynomial constraints.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 154-164 (in Chinese))
    [8] Wang T, Chiang HD.On the number of unstable equilibrium points on spatially-periodic stability boundary.IEEE Transactions on Automatic Control, 2016, 61(9): 2553-2558
    [9] 袁国强, 李颖晖. 积冰对飞机本体纵向非线性动力学稳定域的影响. 西安交通大学学报, 2017, 51(9): 153-158
    [9] (Yuan Guoqiang, Li Yinghui.Effect of ice accretion on aircraft longitudinal nonlinear dynamical stability region.Journal of Xi’an Jiaotong University, 2017, 51(9): 153-158 (in Chinese))
    [10] Chiang HD, Wang T.On the number and types of unstable equilibria in nonlinear dynamical systems with uniformly-bounded stability regions.IEEE Transactions on Automatic Control, 2016, 61(2): 485-490
    [11] Alberto LFC, Chiang HD.Characterization of stability region for general autonomous nonlinear dynamical systems.IEEE Transactions on Automatic Control, 2012, 57(6): 1564-1569
    [12] Krauskopf B, Osinga HM, Doedel EJ, et al.A survey of methods for computing (un)stable manifolds of vector fields.International Journal of Bifurcation and Chaos, 2005, 15(3): 763-791
    [13] Kuznetsov YA.Elements of Applied Bifurcation Theory. 2nd ed. NY: Springer Verlag, 1998
    [14] Guckenheimer PJ, Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. 2nd ed. NY: Springer-Verlag, 1986
    [15] Johnson ME, Jolly MS, Kevrekidis IG.Two-dimensional invariant manifolds and global bifurcations: Some approximation and visualization studies.Numerical Algorithms, 1997, 14(1): 125-140
    [16] Krauskopf B, Osinga HM.Computing geodesic level sets on global (un)stable manifolds of vector fields.SIAM Journal on Applied Dynamical Systems, 2003, 2(4): 546-569
    [17] Guckenheimer J, Worfolk P.Dynamical systems: Some computational problems. Dordrecht: Springer Netherlands, 1993
    [18] Dellnitz M, Hohmann A.A subdivision algorithm for the computation of unstable manifolds and global attractors.Numerische Mathematik, 1997, 75(3): 293-317
    [19] Dellnitz M, Klus S, Ziessler A, et al.A set-oriented numerical approach for dynamical systems with parameter uncertainty.SIAM Journal on Applied Dynamical Systems, 2017, 16(1): 120-138
    [20] Doedel EJ, Champneys AR, Fairgrieve TF, et al.Auto97: Continuation and bifurcation software for ordinary differential equations. 1997. Auto97: Continuation and bifurcation software for ordinary differential equations. 1997.
    [21] Guckenheimer J, Vladimirsky A.A fast method for approximating invariant manifolds. SIAM Journal on Applied Dynamical Systems, 2004, 3(3): 232-260
    [22] Peraire J, Peiró J, Morgan K.Advancing front grid generation//Handbook of Grid Generation. Boca Raton, FL: CRC Press, 1998
    [23] Frey P, George PL. Mesh Generation.2nd ed. Wiltshire: Wiley-ISTE, 2008
    [24] Henderson ME.Computing invariant manifolds by integrating fat trajectories.SIAM Journal on Applied Dynamical Systems, 2005, 4(4): 832-882
    [25] James JM.Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds.Indagationes Mathematicae, 2015, 26(1): 225-265
    [26] van den Berg JB, James JDM, Reinhardt C. Computing (un)stable manifolds with validated error bounds: Non-resonant and resonant spectra.Journal of Nonlinear Science, 2016, 26(4): 1055-1095
    [27] Haro À, Canadell M, Figueras JL, et al.The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations. New York: Springer International Publishing, 2016
    [28] Cabré X, Fontich E, de la Llave R. The parameterization method for invariant manifolds iii: overview and applications.Journal of Differential Equations, 2005, 218(2): 444-515
    [29] 李清都, 杨晓松. 二维不稳定流形的计算. 计算物理, 2005, 22(6): 79-84
    [29] (Li Qingdu, Yang Xiaosong.Computation of two dimensional unstable manifolds.Chinese Journal of Computational Physics, 2005, 22(6): 79-84 (in Chinese))
    [30] 贾蒙, 樊养余, 李慧敏. 基于自适应因子轨道延拓法的不变流形计算. 物理学报, 2010, 59(11): 7686-7692
    [30] (Jia Meng, Fan Yangyu, Li Huimin.Computation of invariant manifolds with self-adaptive parameter and trajectories continuation method.Acta Physica Sinica, 2010, 59(11): 7686-7692 (in Chinese))
    [31] 孙恒义, 樊养余, 李慧敏等. 基于径向增长因子的二维不变流形计算. 计算物理, 2011, 28(4): 621-625
    [31] (Sun Hengyi, Fan Yangyu, Li Huimin, et al.Computation of two-dimensional invariant manifolds with radial growth factor.Chinese Journal of Computational Physics, 2011, 28(4): 621-625 (in Chinese))
    [32] 李清都, 杨晓松. 一种二维不稳定流形的新算法及其应用. 物理学报, 2010, 59(3): 1416-1422
    [32] (Li Qingdu, Yang Xiaosong.A new algorithm for computation of two-dimensional unstable manifolds and its applications.Acta Physica Sinica, 2010, 59(3): 1416-1422 (in Chinese))
    [33] 李清都, 谭宇玲, 杨芳艳. 连续时间系统二维不稳定流形的异构算法. 物理学报, 2011, 60(3): 0302061-0302067
    [33] (Li Qingdu, Tan Yuling, Yang Fangyan.A heterogeneous computing algorithm for two-dimensional unstable manifolds of time-continuous systems.Acta Physica Sinica, 2011, 60(3): 0302061-0302067 (in Chinese))
    [34] Strikwerda J.Finite Difference Schemes and Partial Differential Equations. California: Wadsworth & Brooks/Cole Advanced Books and Software, 1989
    [35] Worring M, Smeulders AWM.Digital curvature estimation.CVGIP: Image Understanding, 1993, 58(3): 366-382
    [36] Razdan A, Bae M.Curvature estimation scheme for triangle meshes using biquadratic bézier patches.Computer-Aided Design, 2005, 37(14): 1481-1491
    [37] Magid E, Soldea O, Rivlin E.A comparison of gaussian and mean curvature estimation methods on triangular meshes of range image data.Computer Vision and Image Understanding, 2007, 107(3): 139-159
    [38] Meyer M, Desbrun M, Schröder P, et al.Discrete Differential-Geometry Operators for Triangulated 2-manifolds. Berlin, Heidelberg: Springer, 2003
    [39] Pinsky T.On the topology of the lorenz system//Proceedings of the Royal Society A: volume 473. The Royal Society, 2017
    [40] Zaborszky J, Huang G, Zheng B, et al.A counterexample of a theorem by tsolas et al. and an independent result by zaborszky et al. IEEE Transactions on Automatic Control, 1988, 33(3): 316-317
  • 加载中
计量
  • 文章访问数:  2022
  • HTML全文浏览量:  106
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回