EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于临界状态的砂土本构模型研究

姚仰平 张民生 万征 王乃东 朱超祁

姚仰平, 张民生, 万征, 王乃东, 朱超祁. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598. doi: 10.6052/0459-1879-17-334
引用本文: 姚仰平, 张民生, 万征, 王乃东, 朱超祁. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598. doi: 10.6052/0459-1879-17-334
Yao Yangping, Zhang Minsheng, Wan Zheng, Wang Naidong, Zhu Chaoqi. CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. doi: 10.6052/0459-1879-17-334
Citation: Yao Yangping, Zhang Minsheng, Wan Zheng, Wang Naidong, Zhu Chaoqi. CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. doi: 10.6052/0459-1879-17-334

基于临界状态的砂土本构模型研究

doi: 10.6052/0459-1879-17-334
基金项目: 国家自然科学基金资助项目(41502265,11672015).
详细信息
    作者简介:

    通讯作者:张民生,工程师,主要研究方向:岩土本构模型、海洋岩土工程及仪器开发等. E-mail:minshengzhang@ouc.edu.cn

    通讯作者:

    张民生

  • 中图分类号: TU43;

CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE

  • 摘要: 砂土孔隙比及所受压力是其力学特性的重要影响因素. 本文基于砂土临界状态线特性分析,采用以e-(p/pa)ξ平面内的线性关系描述其等向压缩线. 通过对比分析两种不同压缩线函数 与临界状态线函数之间的关系提出更适合描述砂土在等向压缩下的参考压缩线,并给出了基于参考压缩线的等向硬化规律. 建议了适用于 描述砂土剪切特性的屈服面函数,并给出利用等向压缩和等p路径确定屈服面形状参数μ的方法. 将不同应力比对应的压缩线作为砂土状态参量参考线,以获取潜在强度Mf与特征状态应力比Mc,进而描述砂土压缩与剪切特性;基于等向压缩与等p路径建立了当前应力比与状态参量参考线之间的相关关系,从而实现了砂土状 态参量参考线由参考压缩线向临界状态线平稳过渡. 建立的砂土本构模型共11个参数,均能够通过常规土工试验或经验获取. 基于模型预测与Toyoura砂的等向压缩、三轴不排水剪切试验及排水剪切试验的对比结果,本文建立的砂土本构模型很好地描述了Toyoura 砂在不同孔隙比和不同压力下的压缩与剪切特性.

     

  • [1] Verdugo R, Ishihara K.The steady state of sandy soils. Soils and Foundations, 1996, 36(2): 81-91
    [2] Li XS, Dafalias YF, Wang ZL.State-dependant dilatancy in critical-state constitutive modelling of sand. Canadian Geotechnical Journal, 1999, 36(4): 599-611
    [3] Roscoe KH, Schofiel AN, Wroth CP.On the yielding of soils. Geotechnique, 1958, 8(1): 22-53
    [4] Riemer MF, Seed RB.Factors affecting apparent position of steady-state line. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(3): 281-288
    [5] Wang Y.Characterization of dilative shear failure in sand. [PhD Thesis]. Hong Kong: Hong Kong University of Science and Technology, 1997
    [6] Li XS, Wang Y.Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217
    [7] Wang G, Xie Y.Modified bounding surface hypoplasticity model for sands under cyclic loading. Journal of Engineering Mechanics, 2014, 140(1): 91-101
    [8] Loukidis D, Salgado R.Modeling sand response using two-surface plasticity. Computers and Geotechnics, 2009, 36(1): 166-186
    [9] 姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型. 岩土工程学报, 2011, 33(12): 1827-1832
    [9] (Yao Yangping, Yu Yani.Extended critical state constitutive model for sand based on unified hardening parameter. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832 (in Chinese))
    [10] Chang CS, Kabir MG, Chang Y.Micromechanics modeling for stress-strain behavior of granular soils. II: Evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 1992, 118(12): 1975-1992
    [11] Been K, Jefferies MG.A state parameter for sands. Geotechnique, 1985,35(2): 99-112
    [12] Bolton MD.The strength and dilatancy of sands. Geotechnique, 1986, 36(1): 65-78
    [13] Ishihara K.Liquefaction and flow failure during earthquakes. Geotechnique, 1993, 43(3): 351-415
    [14] 罗汀, 高智伟, 万征等. 土剪胀性的应力路径相关规律及其模拟. 力学学报, 2010, 42(1): 93-101
    [14] (Luo Ting, Gao Zhiwei, Wan Zheng, et al.Influence of the stress path on dilatancy of soils and its modeling. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 93-101 (in Chinese))
    [15] 路德春, 姚仰平. 砂土的应力路径本构模型. 力学学报, 2005, 37(4): 451-459
    [15] (Lu Dechun, Yao Yangping.Constitutive model of sand considering complex stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 451-459 (in Chinese))
    [16] Prevost JH.A simple plasticity model for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17
    [17] Manzari MT, Dafalias YF.A critical state two-surface plasticity model for sands. Geotechnique, 1997, 47(2): 255-272
    [18] Li XS, Dafalias YF.Dilatancy of cohesionless soils. Geotechnique, 2000, 50(4): 449-460
    [19] Li XS, Ming HY.Unified modeling of flow liquefaction and cyclic mobility. Soil Dynamics and Earthquake Engineering, 2000, 19(5): 363-369
    [20] Zienkiewicz OC, Leung KH, Pastor M.Simple model for transient soil loading in earthquake analysis. I. Basic model and its application. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5): 453-476
    [21] Pastor MZ, ienkiewicz OC, Chan AH. Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190
    [22] Manzanal D, Fernández Merodo JA, Pastor M.Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part 1: Saturated state. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1347-1362.
    [23] Ling HI, Yang S.Unified sand model based on the critical state and generalized plasticity. Journal of Engineering Mechanics, 2006, 132(12): 1380-1391
    [24] 姚仰平, 刘林, 罗汀. 砂土的UH模型. 岩土工程学报, 2016, 38(12): 2147-2153
    [24] (Yao Yangping, Liu Lin, Luo Ting.UH model for sands. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153 (in Chinese))
    [25] Yao YP, Hou W, Zhou AN.UH model: Three-dimensional unified hardening model for overconsolidated clays. Geotechnique, 2009. 59(5): 451-46
    [26] 姚仰平, 万征, 秦振华. 动力UH模型及其有限元应用. 力学学报, 2012, 44(1): 132-139
    [26] (Yao Yangping, Wan Zheng, Qin Zhenhua.Dynamic UH model for sands and its application in FEM. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1645
  • HTML全文浏览量:  204
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回