EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含芯拧绞绳非线性弯曲动力学特性分析与研究

过佳雯 魏承 谭春林 赵阳

过佳雯, 魏承, 谭春林, 赵阳. 含芯拧绞绳非线性弯曲动力学特性分析与研究[J]. 力学学报, 2018, 50(2): 373-384. doi: 10.6052/0459-1879-17-297
引用本文: 过佳雯, 魏承, 谭春林, 赵阳. 含芯拧绞绳非线性弯曲动力学特性分析与研究[J]. 力学学报, 2018, 50(2): 373-384. doi: 10.6052/0459-1879-17-297
Guo Jiawen, Wei Cheng, Tan Chunlin, Zhao Yang. ANALYSIS OF THE CORED STRANDED WIRE ROPE ON THE NONLINEAR BENDING DYNAMIC CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 373-384. doi: 10.6052/0459-1879-17-297
Citation: Guo Jiawen, Wei Cheng, Tan Chunlin, Zhao Yang. ANALYSIS OF THE CORED STRANDED WIRE ROPE ON THE NONLINEAR BENDING DYNAMIC CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 373-384. doi: 10.6052/0459-1879-17-297

含芯拧绞绳非线性弯曲动力学特性分析与研究

doi: 10.6052/0459-1879-17-297
基金项目: 国家重点基础研究发展计划(973计划)(2013CB733004)和微小型航天器技术国防重点学科实验室 开放基金(HIT.KLOF.MST.201703)资助项目.
详细信息
    作者简介:

    *通讯作者:魏承,副教授,主要研究方向:多柔体系统动力学与控制. E-mail:weicheng@hit.edu.cn

    通讯作者:

    魏承

  • 中图分类号: O313.7;

ANALYSIS OF THE CORED STRANDED WIRE ROPE ON THE NONLINEAR BENDING DYNAMIC CHARACTERISTICS

  • 摘要: 建立细长缆索大柔性多体动力学模型时,现实存在的复杂捻制几何构型多不予考虑,而是将柔索简化为材料均匀梁进行描述,致使运动仿真模型与物理实际存在一定差距. 为此,研究一种典型非线性拧绞绳股的大变形等效动力学建模方法,考虑准静态与大范围运动情况下绳股内的线接触,计算了受摩擦力及弯曲曲率影响的绳股可变弯曲刚度,通过等效梁模型避免了绳股精细建模时的大规模计算消耗. 基于连续介质力学与绝对节点坐标方法,建立了拧绞绳惯性广义坐标下的多柔体动力学模型. 为了验证等效模型的可行性,与基于有限段方法建立的精细模型进行对比仿真分析,通过位形验证了等效模型的精度. 进一步地,根据力载作用下的准静态构型,研究了特定构型绳股弯曲刚度沿轴向的分布规律;通过自重力下一端固定柔性绳摆自由运动仿真并与传统均匀梁模型相比,研究了模型弯曲特性的差异. 最后,根据能量守恒原理分析了摩擦耗散系统内各种能量间的相互转化. 拧绞绳大变形等效动力学模型能够提高绳索动力系统运动预测的仿真计算效率,还能为钢丝绳参数与构型设计提供依据.

     

  • [1] Leech C.The Modelling and Analysis of the Mechanics of Ropes. New York: Springer, 2014
    [2] Langlois S, Legeron F, Levesque F.Time history modeling of vibrations on overhead conductors with variable bending stiffness. IEEE Transactions on Power Delivery, 2014, 29(2): 607-614
    [3] Wang Z, Zhang L, Song J, et al.A novel approach for modeling and simulation of helix twisting structure based on mass-spring model. Advances in Mechanical Engineering, 2013, 5: 971251
    [4] 文浩, 陈辉, 金栋平等. 带可控臂绳系卫星释放及姿态控制. 力学学报, 2012, 44(2): 408-414
    [4] (Wen Hao, Chen Hui, Jin Dongping, et al.Deployment and attitude control of a tethered subsatellite with controllable arm. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 408-414 (in Chinese))
    [5] 蔡洪, 杨育伟, 郭才发. 电动力绳系研究进展. 宇航学报, 2014, 35(11): 1223-1232
    [5] (Cai Hong, Yang Yuwei, Guo Caifa.Review of electrodynamic tether system. Journal of Astronautics, 2014, 35(11): 1223-1232 (in Chinese))
    [6] 潘冬, 张越, 魏承等. 空间大型末端执行器绳索捕获动力学建模与仿真. 振动与冲击, 2015, 34(1): 74-79
    [6] (Pan Dong, Zhang Yue, Wei Cheng, et al.Dynamic modeling and simulation on rope capturing by space large end effector. Journal of Vibration and Shock, 2015, 34(1): 74-79 (in Chinese))
    [7] 刘延柱, 薛纭. 受拉扭弹性细杆超螺旋形态的定性分析. 物理学报, 2009, 58(9): 5936-5941
    [7] (Liu Yanzhu, Xue Yun.Qualitive analysis of supercoiling configuration of a thin elastic rod under tension and twist. Acta Physica Sinica, 2009, 58(9): 5936-5941 (in Chinese))
    [8] 刘延柱, 薛纭. 受圆柱面约束螺旋杆伸展为直杆的动力学分析. 力学学报, 2011, 43(6): 1151-1156
    [8] (Liu Yanzhu, Xue Yun.Dynamical analysis of structural process of helical rod to straight rod under constraint of cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1151-1156 (in Chinese))
    [9] Simo JC.A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70
    [10] Reissner E.On one-dimensional finite-strain beam theory: the plane problem. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1972, 23(5): 795-804
    [11] Romero I.A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody System Dynamics, 2008, 20(1): 51-68
    [12] Shabana AA.Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 1997, 1(3): 339-348
    [13] Shabana AA, Yakoub RY.Three dimensional absolute nodal coordinate formulation for beam elements: theory. Journal of Mechanical Design, 2001, 123(4): 606-613
    [14] Nachbagauer K, Gerstmayr J.Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to buckling and nonlinear dynamic examples. Journal of Computational and Nonlinear Dynamics, 2014, 9(1): 011-013
    [15] Ebel H, Matikainen MK, Hurskainen VV, et al.Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dynamics, 2017, 88(2): 1075-1091
    [16] Foti F.A corotational beam element and a refined mechanical model for the nonlinear dynamic analysis of cables. [PhD Thesis]. Milano: Doctoral Dissertation, Politecnico di Milano, 2013
    [17] Foti F, Martinelli L, Perotti F.Numerical integration of the equations of motion of structural systems undergoing large 3D rotations: Dynamics of corotational slender beam elements. Meccanica, 2015, 50(3): 751-765
    [18] Provasi R, Martins CDA.A three-dimensional curved beam element for helical components modeling. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 041601
    [19] 张越, 赵阳, 谭春林等. ANCF 索梁单元应变耦合问题与模型解耦. 力学学报, 2016, 48(6): 1406-1415
    [19] (Zhang Yue, Zhao Yang, Tan Chunlin, et al.The strain coupling problem and model decoupling of ANCF cable/beam element. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415 (in Chinese))
    [20] Gnanavel B, Parthasarathy N.Effect of interfacial contact forces in radial contact wire strand. Archive of Applied Mechanics, 2011, 81(3): 303-317
    [21] Hong K-J, Yi C, Lee Y-K.Geometry and friction of helically wrapped wires in a cable subjected to tension and bending. International Journal of Steel Structures, 2012, 12(2): 233-242
    [22] Lalonde S, Guilbault R, Légeron F.Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts-Part I: Model formulation and validation. International Journal of Mechanical Sciences, 2017, 126: 281-296
    [23] Lalonde S, Guilbault R, Langlois S.Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts-Part II: Application to wind-induced vibration and fatigue analysis of overhead conductors. International Journal of Mechanical Sciences, 2017, 126: 297-307
    [24] Hamper MB, Recuero AM, Escalona JL, et al.Use of finite element and finite segment methods in modeling rail flexibility: a comparative study. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 041-007
    [25] Spak K, Agnes G, Inman D.Cable modeling and internal damping developments. Applied Mechanics Reviews, 2013, 65(1): 010801
    [26] Hong K-J, Der Kiureghian A, Sackman JL.Bending behavior of helically wrapped cables. Journal of Engineering Mechanics, 2005, 131(5): 500-511
    [27] Lanteigne J.Theoretical estimation of the response of helically armored cables to tension, torsion, and bending. Journal of Applied Mechanics, 1985, 52(2): 423-432.
    [28] Costello GA.Theory of Wire Rope. New York: Springer Science & Business Media, 1997
    [29] Doocy ES, Hard AR, Rawlins CB, et al.Transmission Line Reference Book: Wind Induced Conductor Motion. Electric Power Research Institute, 2009
    [30] 过佳雯. 大变形柔性多体系统高效数值计算方法研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2016
    [30] (Guo Jiawen.Research on high efficient numerical algorithm of the flexible multibody dynamics with large deformation. [Master Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1154
  • HTML全文浏览量:  139
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回