EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开放空腔壳体倾斜入水运动特性试验研究

路中磊 孙铁志 魏英杰 王聪

路中磊, 孙铁志, 魏英杰, 王聪. 开放空腔壳体倾斜入水运动特性试验研究[J]. 力学学报, 2018, 50(2): 263-273. doi: 10.6052/0459-1879-17-191
引用本文: 路中磊, 孙铁志, 魏英杰, 王聪. 开放空腔壳体倾斜入水运动特性试验研究[J]. 力学学报, 2018, 50(2): 263-273. doi: 10.6052/0459-1879-17-191
Lu Zhonglei, Sun Tiezhi, Wei Yingjie, Wang Cong. EXPERIMENTAL INVESTIGATION ON THE MOTION FEATURE OF INCLINED WATER-ENTRY OF A SEMI-CLOSED CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 263-273. doi: 10.6052/0459-1879-17-191
Citation: Lu Zhonglei, Sun Tiezhi, Wei Yingjie, Wang Cong. EXPERIMENTAL INVESTIGATION ON THE MOTION FEATURE OF INCLINED WATER-ENTRY OF A SEMI-CLOSED CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 263-273. doi: 10.6052/0459-1879-17-191

开放空腔壳体倾斜入水运动特性试验研究

doi: 10.6052/0459-1879-17-191
基金项目: 国家自然科学基金(11672094, 51709042),黑龙江省自然科学基金 (A201409),哈尔滨市科技创新人才研究专项基金(2013RFLXJ007),中央高校基本科研业务费专项资金(DUT16RC(3)085)资助项目.
详细信息
    作者简介:

    null

    作者简介:魏英杰,教授, 博士生导师,主要研究方向:水动力学. E-mail: weiyingjie@gmail.com

  • 中图分类号: TB126;

EXPERIMENTAL INVESTIGATION ON THE MOTION FEATURE OF INCLINED WATER-ENTRY OF A SEMI-CLOSED CYLINDER

  • 摘要: 基于高速摄像试验方法,研究了开放空腔壳体的倾斜入水运动特性,重点分析了开放空腔结构引起的空泡流动特征和壳体运动规律. 通过试验数据分析了开放空腔内气体运动将引起独特的空泡流动和阶段性的运动规律,探讨了初始入水速度、入水姿态对入水弹道和空泡形态等运动特征的影响. 结果表明:开放空腔壳体入水空泡出现阶段波动演化现象,并先后经历两次闭合;入水空泡演化改变流体动力分布,直接影响壳体运动方式,进而改变水下弹道特征;空腔内部形成相对独立流场环境和开放端周期性流动,在重力作用下液体对空腔内下侧壁面作用力较大,加剧壳体偏转,从而改变入水运动过程的稳定性;随着入水速度的增大,空泡波动特征逐渐明显,闭合时间延迟,非对称深闭合引起的横向位移减小,但偏转角度与入水速度无关;随着初始姿态倾角减小,空泡波动程度减弱、闭合时间延迟,偏转角速度增大,闭合引起的横向位移增大.

     

  • [1] 刘博,申麟. “猎鹰”9火箭一子级海上回收试验成功及成本分析. 中国航天, 2016(5): 22-25
    [2] 马宏林. 国外航天回收技术和航天救生技术近况. 航天返回与遥感, 1995(1): 1-3
    [3] 王芳, 程洪玮, 彭博. “猎鹰9”运载火箭海上平台成功回收的分析及启示. 装备学院学报, 2016(6): 69-74
    [3] (Wang Fang, Cheng Hongwei, Peng Bo.Analysis and enlightenment of successful retrieval of “Falcon 9” rocket on offshore platform. Journal of Equipment Academy, 2016(6): 69-74 (in Chinese))
    [4] Runkle R, Wolf D.Space shuttle solid rocket booster lightweight recovery system//The 13th Aerodynamic Decelerator Systems Technology Conference. Clearwater Beach, FL, May 15-18, 1995
    [5] Kross DA, Keifling LA, Murphy NC, et al.Space shuttle solid rocket booster initial water impact loads and dynamics-analysis, tests, and flight experience. AIAA paper 83-0956, NASA Marshall Space Flight Center, Huntsville, Alabama, USA,January 1983.
    [6] Worthington AM. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Royal Society of London Proceedings, 1887, 25(171-178): 498-503
    [7] Worthington AM. On impact with a liquid surface. Proceedings of the Royal Society of London, 1883, 34(220-223): 217-230
    [8] Worthington AM.A Study of Splashes. New York: Longmans Green and Company, 1908
    [9] 高远, 黄彪, 吴钦等. 绕水翼空化流动及振动特性的实验研究. 力学学报, 2015, 47(6): 1009-1016
    [9] (Gao Yuan, Huang Biao, Wu Qin, et al.Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016 (in Chinese))
    [10] 吕明,宁智,孙春华. 单液滴内空化气泡的生长及溃灭研究. 力学学报,2016, 48(4): 857-866
    [10] (Lü Ming, Ning Zhi, Sun Chunhua.Study on the growth and collapse of cavitation bubble within a droplet. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 857-866 (in Chinese))
    [11] Bottomley GH.The impact of a model seaplane float on water. Report s and Memoranda, No 583, 1919
    [12] Watanabe S.Resistance of impact on water surface. Part V-sphere. Scientific Papers of the Institute of Physical and Chemical Research of Japan, 1934, 23(484): 202-208
    [13] Bergmann R, Van Der Meer D, Gekle S. Controlled impact of a disk on a water surface: cavity dynamics. Journal of Fluid Mechanics, 2009, 633: 381-409
    [14] Howison SD, Ockendon JR, Wilson SK.Incompressible water-entry problems at small deadrise angles. Journal of Fluid Mechanics, 1991, 222: 215-230
    [15] May A, Woodhull JC.Drag coefficients of steel spheres enter water vertically. Journal of Applied Physics, 1948, 19: 1109-1121
    [16] May A, Hoover WR.A study of the water-entry cavity. No.NOLTR-63-264
    [17] May A.Water entry and the cavity-running behavior of missiles. Washington: AD A020429, 1975
    [18] May A.Effect of surface condition of a sphere on its water-entry cavity. Journal of Applied Physics, 1951, 22(10): 1219-1222
    [19] May A.Vertical entry of missiles into water. Journal of Applied Physics, 1952, 23(12): 1362-1372
    [20] May A.Review of water-entry theory and data. Journal of Hydronautics, 1970, 4(4): 140-142
    [21] Savchenko YN.Experimental Investigation of Supercavitating Motion of Bodies. Ukrainian Academy of Sciences Kiev Inst of Hydromechanics, 2001
    [22] Truscott TT, Techet AH.A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres. Physics of Fluids, 2009, 21: 121703
    [23] Truscott TT, Techet AH.Water entry of spinning spheres. Journal of Fluid Mechanics, 2009, 625(1): 135-165
    [24] Grumstrup T, Keller JB, Belmonte A.Cavity ripples observed during the impact of solid objects into liquids. Physical Review Letters, 2007, 99(11): 114502
    [25] Waugh JG.Water-entry pitch modeling (Water entry pitch modeling using Froude and cavitation number scaling with and without gas density scaling, using dummy Mk 25 aircraft torpedoes). Journal of Hydronautics, 1971, 2(2): 87-92
    [26] Truscott TT, Gomez JT, Beal DN, et al.Shallow-angle water entry of ballistic projectiles// 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2008
    [27] Korobkin AA, Pukhnachov VV.Initial stage of water impact. Annual Review Fluid Mechanics, 1988, 20:159-185
    [28] Takagi K, Dobashi J.Influence of trapped air on the slamming of a ship. Journal of Ship Research, 2003, 47(3): 187-193
    [29] 路中磊,魏英杰,王聪等. 基于高速摄像试验的开放腔体圆柱壳入水空泡流动研究. 物理学报,2016,65(1): 014704
    [29] (Lu Zhonglei, Wei Yingjie, Wang Cong, et al.An experimental study of water-entry cavitating flows of an end-closed cylindrical shell based on the high-speed imaging technology. Acta Physica Sinica, 2016,65(1): 014704 (in Chinese))
    [30] 路中磊,魏英杰,王聪等. 开放空腔壳体入水扰动流场结构及空泡失稳特征. 物理学报,2017,66(6): 064702
    [30] (Lu Zhonglei, Wei Yingjie, Wang Cong, et al.Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder. Acta Physica Sinica, 2017, 66(6): 064702 (in Chinese))
    [31] 路中磊,魏英杰,王聪等. 开放空腔壳体入水流场结构及流体动力特征研究. 北京航空航天大学学报, 2016,42(11): 2403
    [31] (Lu Zhonglei, Wei Yingjie, Wang Cong, et al.Numerical study on flow structure and fluid dynamics of an end-closed cylinder shell vertical water-entry. Journal of Beijing University of Aeronautics and Astronautics,2016,42(11): 2403 (in Chinese))
    [32] 赵蛟龙,孙龙泉,张忠宇等. 柱形空腔结构落水载荷及冲击响应研究. 振动与冲击,2013,32(20):113-118
    [32] (Zhao Jiaolong,Sun Longquan,Zhang Zhongyu,et al.Hydrodynamic loads and impact response for a water entry of a cylindrical cavitary structure. Journal of Vibration and Shock, 2013, 32(20): 113-118 (in Chinese))
    [33] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [33] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1199
  • HTML全文浏览量:  143
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-19
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回