EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响

蒋华臻 王保安 李正阳 蔡宝春 杨兵 任志远

蒋华臻, 王保安, 李正阳, 蔡宝春, 杨兵, 任志远. 车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响[J]. 力学学报, 2018, 50(1): 157-166. doi: 10.6052/0459-1879-17-129
引用本文: 蒋华臻, 王保安, 李正阳, 蔡宝春, 杨兵, 任志远. 车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响[J]. 力学学报, 2018, 50(1): 157-166. doi: 10.6052/0459-1879-17-129
Jiang Huazhen, Wang Baoan, Li Zhengyang, Cai Baochun, Yang Bing, Ren Zhiyuan. INFLUENCE OF MACROSCOPIC TOPOGRAPHY ORIENTATIONS OF WHEELS ON ADHESION COEFFICIENT OF HIGH SPEED WHEEL/RAIL UNDER WATER LUBRICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 157-166. doi: 10.6052/0459-1879-17-129
Citation: Jiang Huazhen, Wang Baoan, Li Zhengyang, Cai Baochun, Yang Bing, Ren Zhiyuan. INFLUENCE OF MACROSCOPIC TOPOGRAPHY ORIENTATIONS OF WHEELS ON ADHESION COEFFICIENT OF HIGH SPEED WHEEL/RAIL UNDER WATER LUBRICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 157-166. doi: 10.6052/0459-1879-17-129

车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响

doi: 10.6052/0459-1879-17-129
基金项目: 国家自然科学基金(51275510) 与国家重点基础研究发展计划(973 计划)(2011CB711103) 资助项目
详细信息
    作者简介:

    **通讯作者:李正阳,副研究员,主要研究方向:金属材料的润滑与摩擦、磨损与疲劳等. E-mail:zyli@imech.ac.cn

    通讯作者:

    李正阳

  • 中图分类号: TB125;

INFLUENCE OF MACROSCOPIC TOPOGRAPHY ORIENTATIONS OF WHEELS ON ADHESION COEFFICIENT OF HIGH SPEED WHEEL/RAIL UNDER WATER LUBRICATION

  • 摘要: 轮胎和沥青都属于低弹性模量材料,即使运动速度较低,流体动压导致的水膜也足以产生润滑作用. 对于列车轮轨这类高 弹性模量材料,只有当运行速度达到200 km/h 以上,水的润滑作用才体现出来,使轮轨黏着系数大幅降低,给高速列车运 行带来重大安全隐患. 增大表面粗糙度一般能够提高轮轨黏着系数,然而研究表明,在表面粗糙度基本相同的条件下,表面 形貌取向对混合润滑状态下的黏着系数有显著影响. 文中用统一雷诺方程模型,计算了在水润滑状态下,具有纵纹、横纹、菱形等特定形貌取向的车轮在高速运动时(最高500 km/h) 对黏着系数的影响,并将计算结果与平均流量模型计算的结果和已 有的实验结果进行了比较. 结果表明:各种形貌下,轮轨黏着系数都随速度的增大而减小,其中菱形的黏着系数大于横纹 的,而横纹的黏着系数又大于纵纹的,影响黏着系数的主要因素是固体接触压力与总压力之比. 在轮轨点接触椭 圆率$k<1$时, 接触区的侧流效应不可忽略,用平均流量模型计算会导致谬误.

     

  • [1] Ohyama T.Tribological studies on adhesion phenomena between wheel and rail at high speed.Wear, 1991, 144: 263-275
    [2] 杨国伟, 魏宇杰, 赵桂林等. 高速列车的关键力学问题. 力学进展, 2015, 45: 201507
    [2] Yang Guowei, Wei Yujie, Zhao Guilin, et al.Research progress on the mechanics of high speed rails.Advances in Mechanics, 2015, 45: 201507 (in Chinese)
    [3] 翟婉明, 金学松, 赵永翔. 高速铁路工程中若干典型力学问题. 力学进展, 2010, 40(3): 358-374
    [3] Zhai Wanming, Jin Xuesong, Zhao Yongxiang.Some typical mechanics problems in high-speed railway engineering.Advances in Mechanics, 2010, 40(3): 358-374 (in Chinese)
    [4] Ohyama T. Traction and slip at higher rolling speeds: Some experiments under dry friction water lubrication//Kalousek J, editors. Contact Mechanics and Wear of Rail/Wheel Systems, Proceedings of the International Symposium held at the University of British Columbia, Vancouver: University of Waterloo Press, 1983, 395-418
    [5] Ohyama T, Ohno K, Nakano S.Influence of surface contamination on adhesion force between wheel and rail at higher speeds-1st report-behavior of adhesion force under the surfaces contaminated with a small amount of liquid paraffin.J Jpn Soc Lubr Eng, 1989, 10: 111-114
    [6] Ohyama T.Influence of surface contamination on adhesion force between wheel and rail at higher speeds-2nd Report-effects of friction coefficients and tangential rigidity on adhesion force.J Jpn Soc Lubr Eng, 1989, 10: 115-120
    [7] Ohyama T, Nakano S.Influence of surface contamination on adhesion force between wheel and rail at higher speeds-3rd Report-behavior of adhesion force under the formation of lubricant film.J Jpn Soc Lubr Eng, 1989, 10: 121-124
    [8] Zhang WH, Chen JZ, Wu XJ, et al.Wheel/rail adhesion and analysis by using full scale roller rig,Wear, 2002, 253: 82-88
    [9] Tomberger C, Dietmaier P, Sextro W.Friction in wheel-rail contact: A model comprising interfacial fluids, surface roughness and temperature.Wear, 2011, 271(1-2): 2-12
    [10] Zhu Y, Olofsson U, Söderberg A.Adhesion modeling in the wheel-rail contact under dry and lubricated conditions using measured 3D surfaces.Tribol Inter, 2013, 61: 1-10
    [11] 黄平, 温诗铸. 点、线接触真实粗糙表面的弹流润滑研究. 力学学报, 1993, 25(2): 302-308
    [11] Huang Ping, Wen Shizhu.Study on elastohydrodynamic lubrication problems with real rough surfaces in line and point contacts.Theoretical and Applied Mechanics, 1993, 25(2): 302-308 (in Chinese)
    [12] Dowson D.Elasto-hydrodynamic Lubrication. Oxford: Pergamon Press, 1977: 71
    [13] Chen H, Ohyama T, Yoahimura A.Numerical analysis for the influence of water film on adhesion between rail and wheel.Proc Inst Mech Engrs: Part J, 1998, 212: 359-368
    [14] Patir N, Cheng HS.Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication.J Lubri Technol Trans ASME, 1978, 100(1): 12-17
    [15] Patir N, Cheng HS.Application of average flow model to lubrication between rough sliding surfaces. J Lubri Technol Trans ASME, 1979, 101(2): 220-230
    [16] Chen H, Ban T, Ishida M, et al.Adhesion between rail/wheel under water lubricated contact.Wear, 2002, 253: 75-81
    [17] Chen H, Ishida M, Nakahara T.Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness.Wear, 2005, 258: 1209-1216
    [18] Wu B, Wen ZF, Wang HY.Numerical analysis on wheel-rail adhesion under mixed contamination of oil and water with surface roughness.Wear, 2014, 314(1-2): 140-147
    [19] Wu B, Wen ZF, Wang HY.Analysis of wheel and rail adhesion under wet condition by using elastic-plastic microcontact model.Lubri Sci, 2015, 27(4): 297-312
    [20] Wu B, Wen Z, Wu T.Analysis on thermal effect on high-speed wheel/rail adhesion under interfacial contamination using a three-dimensional model with surface roughness.Wear, 2016, 366: 95-104
    [21] Chen H, Ban T, Ishida M, et al.Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions.Wear, 2008, 265(9-10): 1504-1511
    [22] 蔡宝春, 蒋华臻, 王文中等. 轮轨试样表面粗糙度取向对油润滑下摩擦系数的影响,力学学报,2016, 48(4): 1114-1125
    [22] Cai Baochun, Jiang Huazhen, Wang Wenzhong, et al.Influence of surface roughness orientations on friction coefficient of wheel/rail specimen in oil lubrication.Chinese J Theoretical and Applied Mechanics, 2016, 48(4): 1114-1125 (in Chinese)
    [23] Zhu D, Cheng HS.Effect of surface roughness on the point contact EHL.J Tribol Trans ASME, 1988, 110(1): 32-37
    [24] Zhu D, Hu YZ.Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts.Tribol Trans, 2001, 44: 391-398
    [25] Hu YZ, Zhu D.A full numerical solution to the mixed lubrication in point contacts.J Tribol Trans ASME, 2000, 122(1): 1-9
    [26] Bett KE, Cappi JB.Effect of pressure on the viscosity of water.Nature, 1965, 207(4997): 620-621
    [27] 王文中. 混合润滑的数值模拟和实验研究[博士论文]. 北京: 清华大学, 2003
    [27] Wang Wenzhong.Numerical simulation and experimental studies on mixed Lubrication. [PhD Thesis]. Beijing: Tsinghua University, 2003 (in Chinese)
    [28] Zhu D.On some aspects in numerical solution of thin-film and mixed elastohydrodynamic lubrication.Proc IMechE Part J J Eng Tribol, 2007, 221: 561-579
    [29] Chen H, Ishida M, Namura A.Estimation of wheel/rail adhesion coefficient under wet condition with measured boundary friction coefficient and real contact area.Wear, 2011, 271(1-2): 32-39
    [30] Dowson D.Elastohydrodynamic and micro-elastohydrodynamic lubrication.Wear, 1995, 190(2): 125-138
    [31] 刁晓明. 服役动车组车轮磨耗及振动性能跟踪研究[硕士论文]. 北京:北京交通大学, 2014
    [31] Diao Xiaoming.The track research on wheel wear and vibration performance of the service EMU in China. [Master Thesis]. Beijing: Beijing Jiaotong University, 2014 (in Chinese)
    [32] Dowson D.Elastohydrodynamic lubrication. Pergmon Press, 1977
    [33] 吴兵. 高速轮轨黏着特性数值分析. [硕士论文]. 成都: 西南交通大学, 2009
    [33] Wu Bing, Numerical analysis of wheel/rail adhesion characteristic for high-speed railway. [Master thesis]. Chengdu: Xi’nan Jiaotong University, 2009 (in Chinese)
    [34] Gallardo-Hernandez EA, Lewis R.Twin disc assessment of wheel-rail adhesion.Wear, 2008, 265(9-10): 1309-1316
    [35] Baek KS, Kyogoku K, Nakahara T. An experimental investigation of transient traction characteristics in rolling-sliding wheel-rail contacts under dry-wet conditions. Wear, 263(2007): 169-179
    [36] Wang WJ, Wang H, Wang HY.Sub-scale simulation and measurement of railroad wheel/rail adhesion under dry and wet conditions.Wear, 2013, 302(1-2): 1461-1467
    [37] Wang WJ, Lewis SR, Lewis R, et al.The role of slip ratio in rolling contact fatigue of rail materials under wet conditions.Wear, 2017, 376: 1892-1900
    [38] Lewis R, Gallardo-Hernandez EA, Hilton T, et al.Effect of oil and water mixtures on adhesion in the wheel-rail contact.P IMech Eng F J Rail & Rapid Transit, 2009, 223(2): 275-283
    [39] Jeffreys H.The draining of a vertical plate.Math Proc Cambri Philo Soci, 1930, 26: 204-205
    [40] Moes H.Optimum similarity analysis with applications to elastohydrodynamic lubrication.Wear, 1992, 59(1): 57-66
    [41] Akbarzadeh S, Khonsari MM.Effect of surface pattern on Stribeck curve.Tribol Lett, 2010, 37(2): 477-86
    [42] Akbarzadeh S, Khonsari MM.On the prediction of running in behavior in mixed-lubrication line contact.J Tribol Trans ASME, 2010, 132(2): 032102
    [43] Zhu D, Wang Q.Effect of roughness orientation on the elastohydrodynamic lubrication film thickness.J Tribol Trans ASME, 2013, 135(2): 031501
  • 加载中
计量
  • 文章访问数:  758
  • HTML全文浏览量:  83
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-18
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回