EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究

胡冉 陈益峰 万嘉敏 周创兵

胡冉, 陈益峰, 万嘉敏, 周创兵. 超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究[J]. 力学学报, 2017, 49(3): 638-648. doi: 10.6052/0459-1879-16-237
引用本文: 胡冉, 陈益峰, 万嘉敏, 周创兵. 超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究[J]. 力学学报, 2017, 49(3): 638-648. doi: 10.6052/0459-1879-16-237
Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. doi: 10.6052/0459-1879-16-237
Citation: Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. doi: 10.6052/0459-1879-16-237

超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究

doi: 10.6052/0459-1879-16-237
基金项目: 

国家自然科学基金 51409198

国家自然科学基金 51579188

中国博士后科学基金 2015T80833

详细信息
    通讯作者:

    2) 陈益峰, 教授, 主要研究方向:岩土介质多场耦合与渗流控制理论.E-mail:csyfchen@whu.edu.cn

  • 中图分类号: O363.2;V211.1+7

SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION

  • 摘要: CO2毛细捕获机制是CO2地质封存中的关键科学问题,然而有关孔隙尺度下(微米极)超临界CO2毛细捕获的研究较少。采用高压流体-显微镜-微观模型实验装置,开展超临界CO2条件(8.5 MPa,45℃)下CO2驱替水(排水)和水驱替CO2(吸湿)实验,采用高分辨率照相机采集CO2水两相流运动图像,并借助光学显微镜直接观测孔隙尺度下CO2毛细捕获特征。同时,采用计算流体动力学方法对实验过程进行三维数值模拟。数值模拟不仅反映了实验过程中两相流驱替锋面的推进过程,还刻画了孔隙尺度下被捕获的CO2液滴/团簇三维空间形态特征。最后,基于数值模拟给出了CO2初始饱和度与残余饱和度曲线,即毛细捕获曲线,并对比分析了3种毛细捕获曲线预测模型(即Jurauld模型、Land模型和Spiteri模型)的优劣。分析表明,Jurauld模型的描述能力稍优于Land模型,Spiteri模型的描述能力较弱。由于Land模型只需单个参数,且参数具有明确的物理意义,因此在实际工程中,建议优先采用Land模型。

     

  • 图  1  高压流体-显微镜-微观模型实验装置

    Figure  1.  High-pressure fluids-microscopy-micromodel system

    图  2  流体体积法示意图

    Figure  2.  Illustration of the volume of fluid method

    图  3  微观模型有限体积网格

    Figure  3.  Finite volume mesh for the micromodel

    图  4  两种互不相容流体流动状态相图

    Figure  4.  The phase diagram for displacement pattern within the two-phase immiscible fluid flow

    图  5  排水过程(drainage)0.1 s时刻数值模拟结果

    Figure  5.  The numerical results for the two-phase fluid flow after 0.1 s of drainage

    图  6  排水过程(drainage)1 s时刻实验(由照相机采集)与数值模拟对比((a)实验结果, (b)数值模拟结果)

    Figure  6.  Comparison between numerical results and the DSLR captured images after 1 s of drainage ((a) experimental result, (b) numerical simulation)

    图  7  吸湿过程(imbibition) 0.1 s时刻数值模拟结果

    Figure  7.  The numerical results for the two-phase fluid flow after 0.1 s of imbibition

    图  8  吸湿过程(imbibition) 1 s时刻实验(由照相机采集)与数值模拟对比((a)实验结果, (b)数值模拟结果)

    Figure  8.  Comparison between numerical results and the DSLR captured images after 1 s of imbibition ((a) experimental result, (b) numerical simulation)

    图  9  超临界CO2毛细捕获实验结果(a) ~ (g)与数值模拟结果(h) ~ (n). (a)和(c)为显微镜低倍物镜采集的被捕获CO2液滴/团簇分布;(b)为照相机采集的被捕获CO2液滴/团簇整体分布;(d) ~ (g)为显微镜高倍物镜采集的单个孔隙中被捕获CO2团簇分布形态. (m)为被捕获的CO2液滴/团簇整体分布;(l)和(n)为被捕获的CO2团簇在多个孔隙内的分布;(h) ~ (k)为被捕获的CO2团簇在单个孔隙中的形态

    Figure  9.  The observed (a) ~ (g) and simulated (h) ~ (n) shape and distribution of trapped CO2 droplets/clusters: (a) and (c) the distribution of trapped CO2 droplets/clusters at multiple pores; (b) the distribution of trapped CO2 droplets/clusters at the full scale of micromodel; (d) ~ (g) the distribution of trapped CO2 droplets/clusters at a single pore. (m) the distribution of trapped CO2 droplet/cluster at the full scale of micromodel; (l) and (n) the distribution of trapped CO2 droplets/clusters at multiple pores; (h) ~ (k) the distribution of trapped CO2 droplets/clusters at a single pore

    图  10  超临界CO2毛细捕获曲线数值模拟结果与不同模型对比

    Figure  10.  The comparison of the capillary trapping curve between the numerical simulation/experimental data and three different models

    表  1  超临界CO2与水两相流参数

    Table  1.   The parameters for the supercritical CO2-water two-phase fluid flow

    下载: 导出CSV

    表  2  各模型的最优拟合系数与均方偏差

    Table  2.   The fitting parameters and the root-mean-square-error (RMSE) for the three models

    下载: 导出CSV
  • [1] Zhang W, Li Y, Xu T, et al. Long-term variations of CO2 trapped in different mechanisms in deep saline formations:a case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 2009, 3(2):161-180 doi: 10.1016/j.ijggc.2008.07.007
    [2] Metz B, Davidson O, De Coninck H, et al. IPCC special report on carbon dioxide capture and storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, United Kingdom and New York, USA:Cambridge University Press, 2005
    [3] 李小春, 刘延锋, 白冰等.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 2006, 25(5):963-968

    Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 Saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):963-968 (in Chinese)
    [4] 李小春, 方志明, 魏宁等.我国CO2捕集与封存的技术路线探讨.岩土力学, 2009, 30(9):2674-2678 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ

    Li Xiaochun, Fang Zhiming, Wei Ning, et al. Discussion on technical roadmap of CO2 capture and storage in China. Rock and Soil Mechanics, 2009, 30(9):2674-2678 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ
    [5] Suekane T, Nobuso T, Hirai S, et al. Geological storage of carbon dioxide by residual gas and solubility trapping. International Journal of Greenhouse Gas Control, 2008, 2(1):58-64 doi: 10.1016/S1750-5836(07)00096-5
    [6] Al Mansoori SK, Itsekiri E, Iglauer S, et al. Measurements of nonwetting phase trapping applied to carbon dioxide storage. International Journal of Greenhouse Gas Control, 2010, 4(2):283-288 doi: 10.1016/j.ijggc.2009.09.013
    [7] Tanino Y, Blunt M. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resources Research, 2013, 49(7):4311-4319 doi: 10.1002/wrcr.20344
    [8] Al-Raoush RI. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Environmental Science & Technology, 2009, 43(14):4796-4801 https://www.ncbi.nlm.nih.gov/pubmed/19673267
    [9] Iglauer S, Pentland C, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015, 51(11):729-774 https://espace.curtin.edu.au/handle/20.500.11937/20032
    [10] Chaudhary K, Bayani Cardenas M, Wolfe WW, et al. Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40(15):3878-3882 doi: 10.1002/grl.50658
    [11] Tanino Y, Blunt MJ. Capillary trapping in sandstones and carbonates:Dependence on pore structure. Water Resources Research, 2012, 48(8):W08525 doi: 10.1029/2011WR011712/full#footer-citing
    [12] Moura M, Fiorentino EA, Måløy K, et al. Impact of sample geometry on the measurement of pressure-saturation curves:Experiments and simulations. Water Resources Research, 2015, 51(12):8900-8926
    [13] Kimbrel EH, Herring AL, Armstrong RT, et al. Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. International Journal of Greenhouse Gas Control, 2015, 42:1-15 doi: 10.1016/j.ijggc.2015.07.011
    [14] Chatzis I, Kuntamukkula M, Morrow N. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reservoir Engineering, 1988, 3(3):902-912 doi: 10.2118/13213-PA
    [15] El-Maghraby RM, Blunt MJ. Residual CO2 trapping in Indiana limestone. Environmental Science & Technology, 2012, 47(1):227-233
    [16] Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. International Journal of Greenhouse Gas Control, 2014, 22:1-14 doi: 10.1016/j.ijggc.2013.12.018
    [17] Niu B, Al-Menhali A, Krevor SC. The impact of reservoir conditions on the residual trapping of carbon dioxide in Berea sandstone. Water Resources Research, 2015, 51(4):2009-2029 doi: 10.1002/2014WR016441
    [18] Zhang C, Oostrom M, Grate JW, et al. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environmental Science & Technology, 2011, 45(17):7581-7588 https://www.ncbi.nlm.nih.gov/pubmed/21774502
    [19] Wang Y, Zhang C, Wei N, et al. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. Environmental Science & Technology, 2012, 47(1):212-218
    [20] Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal Of Fluid Mechanics, 1988, 189:165-187 doi: 10.1017/S0022112088000953
    [21] Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of geological carbon dioxide storage under in situ conditions. Geophysical Research Letters, 2013, 40(15):3915-3918 doi: 10.1002/grl.50771
    [22] 武爱兵, 李铱, 常春等.不同成分盐水驱CO2.现代地质, 2014, 28(5):1061-1067 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ

    Wu Aibing, Li Yi, Chang Chun, et al. The residual gas saturation of different components of saline flooding CO2. Geoscience, 2014, 28(5):1061-1067 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ
    [23] Kim Y, Wan J, Kneafsey TJ, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine:pore-scale studies in micromodels. Environmental Science & Technology, 2012, 46(8):4228-4235 http://www.ncbi.nlm.nih.gov/pubmed/22404561
    [24] Chang C, Zhou Q, Kneafsey TJ, et al. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Advances in Water Resources, 2016, 92:142-158 doi: 10.1016/j.advwatres.2016.03.015
    [25] Chang C, Zhou Q, Oostrom M, et al. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Advances in Water Resources, 2017, 100:14-25 doi: 10.1016/j.advwatres.2016.12.003
    [26] Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016, 113(37):10251-10256 doi: 10.1073/pnas.1603387113
    [27] Xu W, Ok JT, Xiao F, et al. Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Physics of Fluids, 2014, 26(10):093102 http://www.researchgate.net/profile/Xiaolong_Yin/publication/265852004_Effect_of_pore_geometry_and_interfacial_tension_on_water-oil_displacement_efficiency_in_oil-wet_microfluidic_porous_media_analogs/links/541f9d8b0cf241a65a1ab8ac.pdf?disableCoverPage=true
    [28] Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement:Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011, 25(8):3493-3505 https://www.researchgate.net/publication/241971473_Influence_of_Viscous_and_Capillary_Forces_on_Immiscible_Fluid_Displacement_Pore-Scale_Experimental_Study_in_a_Water-Wet_Micromodel_Demonstrating_Viscous_and_Capillary_Fingering?ev=auth_pub
    [29] Cottin C, Bodiguel H, Colin A. Influence of wetting conditions on drainage in porous media:A microfluidic study. Physical Review E, 2011, 84(2):026311 doi: 10.1103/PhysRevE.84.026311
    [30] Raeesi B, Piri M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach. Journal of Hydrology, 2009, 376(3):337-352 http://www.sciencedirect.com/science/article/pii/S0022169409004442
    [31] Liu H, Ju Y, Wang N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92(3):033306 doi: 10.1103/PhysRevE.92.033306
    [32] Bandara U, Tartakovsky AM, Oostrom M, et al. Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Advances in Water Resources, 2013, 62:356-369 doi: 10.1016/j.advwatres.2013.09.014
    [33] Raeini AQ, Bijeljic B, Blunt MJ. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 2015, 83:102-110 doi: 10.1016/j.advwatres.2015.05.008
    [34] Ferrari A, Jimenez-Martinez J, Borgne TL, et al. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 2015, 51(3):1381-1400 doi: 10.1002/2014WR016384
    [35] Ferrari A, Lunati I. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in Water Resources, 2013, 57:19-31 doi: 10.1016/j.advwatres.2013.03.005
    [36] Greenshields C. OpenFOAM User Guide. Version 2.4. 0. OpenFOAM Foundation Ltd, 2015
    [37] Batzle M, Wang Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11):1396-408 doi: 10.1190/1.1443207
    [38] Wang S, Tokunaga TK. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands:Implications for geologic carbon sequestration in carbonate reservoirs. Environmental Science & Technology, 2015, 49 (13):7208-7217 http://www.ncbi.nlm.nih.gov/pubmed/26517749
    [39] Abrãmoff MD, Magalhães PJ, Ram SJ. Image processing with Image J. Biophotonics International, 2004, 11(8):36-42
    [40] Roman S, Soulaine C, AlSaud MA, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 2015, 95:199-211 https://www.researchgate.net/publication/282459814_Particle_Velocimetry_Analysis_of_Immiscible_Two-Phase_Flow_in_Micromodels
    [41] Horgue P, Augier F, Duru P, et al. Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 2013, 102(15):335-345 http://www.sciencedirect.com/science/article/pii/S0009250913005745
    [42] Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media:Comparison with percolation theory. Water Resources Research, 2015, 51(11):9094-9111 doi: 10.1002/2015WR017852
    [43] Mohammadian S, Geistlinger H, Vogel HJ. Quantification of gasphase trapping within the capillary fringe using computed microtomography. Vadose Zone Journal, 2015, 14(5):
    [44] Jimenez-Martínez J, Porter ML, Hyman JD, et al. Mixing in a threephase system:Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letter, 2016, 43(1):196-205 doi: 10.1002/2015GL066787
    [45] Land CS. Calculation of imbibition relative permeability for twoand three-phase flow from rock properties. Society of Petroleum Engineers Journal, 1968, 8(2):149-156 doi: 10.2118/1942-PA
    [46] Jerauld G. General three-phase relative permeability model for Prudhoe Bay. SPE Reservoir Engineering, 1997, 12(04):255-263 doi: 10.2118/36178-PA
    [47] Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE Journal, 2008, 13(3):277-288 doi: 10.2118/96448-PA
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1747
  • HTML全文浏览量:  386
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 网络出版日期:  2017-02-15
  • 刊出日期:  2017-05-18

目录

    /

    返回文章
    返回