SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION
-
摘要: CO2毛细捕获机制是CO2地质封存中的关键科学问题,然而有关孔隙尺度下(微米极)超临界CO2毛细捕获的研究较少。采用高压流体-显微镜-微观模型实验装置,开展超临界CO2条件(8.5 MPa,45℃)下CO2驱替水(排水)和水驱替CO2(吸湿)实验,采用高分辨率照相机采集CO2水两相流运动图像,并借助光学显微镜直接观测孔隙尺度下CO2毛细捕获特征。同时,采用计算流体动力学方法对实验过程进行三维数值模拟。数值模拟不仅反映了实验过程中两相流驱替锋面的推进过程,还刻画了孔隙尺度下被捕获的CO2液滴/团簇三维空间形态特征。最后,基于数值模拟给出了CO2初始饱和度与残余饱和度曲线,即毛细捕获曲线,并对比分析了3种毛细捕获曲线预测模型(即Jurauld模型、Land模型和Spiteri模型)的优劣。分析表明,Jurauld模型的描述能力稍优于Land模型,Spiteri模型的描述能力较弱。由于Land模型只需单个参数,且参数具有明确的物理意义,因此在实际工程中,建议优先采用Land模型。Abstract: The CO2 capillary trapping is an important scientific issue in geological carbon sequestration, but few researches focus on the trapping mechanism at pore scale under supercritical CO2 condition. In this study, based on the high-pressure fluids-microscopy-micromodel experimental system, we performed drainage experiment, i.e. supercritical CO2 displacing water, and imbibition experiment, i.e. water displacing CO2, under the conditions of 45℃ and 8.5 MPa. The DSLR camera was used to capture pictures of CO2-water two-phase immiscible flow and the microscopy was used to capture the capillary trapping behavior for the supercritical CO2 at the pore scale. The computational fluid dynamic method was adopted to simulate the two-phase fluid flow processes. The numerical results are generally in agree-ment with the experimental observations, and further provide three-dimensional geometries on the interface during the drainage-imbibition processes and the trapped supercritical CO2 droplet/cluster. Finally, the capillary trapping curve, i.e. the relationship between the initial CO2 saturation and the residual saturation, was obtained from the numerical results, and we made an assessment of the three capillary trapping models, i.e. Land's, Jurauld's and Spiteri's trapping models. A comparison of the models performance indicates that Jurauld's model behaves slightly better than Land's model, whereas Spiteri's model behaves poorly. However, given that Land's model only contains one parameter of clear physical meaning, it is recommended for practical use.
-
图 9 超临界CO2毛细捕获实验结果(a) ~ (g)与数值模拟结果(h) ~ (n). (a)和(c)为显微镜低倍物镜采集的被捕获CO2液滴/团簇分布;(b)为照相机采集的被捕获CO2液滴/团簇整体分布;(d) ~ (g)为显微镜高倍物镜采集的单个孔隙中被捕获CO2团簇分布形态. (m)为被捕获的CO2液滴/团簇整体分布;(l)和(n)为被捕获的CO2团簇在多个孔隙内的分布;(h) ~ (k)为被捕获的CO2团簇在单个孔隙中的形态
Figure 9. The observed (a) ~ (g) and simulated (h) ~ (n) shape and distribution of trapped CO2 droplets/clusters: (a) and (c) the distribution of trapped CO2 droplets/clusters at multiple pores; (b) the distribution of trapped CO2 droplets/clusters at the full scale of micromodel; (d) ~ (g) the distribution of trapped CO2 droplets/clusters at a single pore. (m) the distribution of trapped CO2 droplet/cluster at the full scale of micromodel; (l) and (n) the distribution of trapped CO2 droplets/clusters at multiple pores; (h) ~ (k) the distribution of trapped CO2 droplets/clusters at a single pore
表 1 超临界CO2与水两相流参数
Table 1. The parameters for the supercritical CO2-water two-phase fluid flow
表 2 各模型的最优拟合系数与均方偏差
Table 2. The fitting parameters and the root-mean-square-error (RMSE) for the three models
-
[1] Zhang W, Li Y, Xu T, et al. Long-term variations of CO2 trapped in different mechanisms in deep saline formations:a case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 2009, 3(2):161-180 doi: 10.1016/j.ijggc.2008.07.007 [2] Metz B, Davidson O, De Coninck H, et al. IPCC special report on carbon dioxide capture and storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, United Kingdom and New York, USA:Cambridge University Press, 2005 [3] 李小春, 刘延锋, 白冰等.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 2006, 25(5):963-968Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 Saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):963-968 (in Chinese) [4] 李小春, 方志明, 魏宁等.我国CO2捕集与封存的技术路线探讨.岩土力学, 2009, 30(9):2674-2678 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQLi Xiaochun, Fang Zhiming, Wei Ning, et al. Discussion on technical roadmap of CO2 capture and storage in China. Rock and Soil Mechanics, 2009, 30(9):2674-2678 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ [5] Suekane T, Nobuso T, Hirai S, et al. Geological storage of carbon dioxide by residual gas and solubility trapping. International Journal of Greenhouse Gas Control, 2008, 2(1):58-64 doi: 10.1016/S1750-5836(07)00096-5 [6] Al Mansoori SK, Itsekiri E, Iglauer S, et al. Measurements of nonwetting phase trapping applied to carbon dioxide storage. International Journal of Greenhouse Gas Control, 2010, 4(2):283-288 doi: 10.1016/j.ijggc.2009.09.013 [7] Tanino Y, Blunt M. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resources Research, 2013, 49(7):4311-4319 doi: 10.1002/wrcr.20344 [8] Al-Raoush RI. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Environmental Science & Technology, 2009, 43(14):4796-4801 https://www.ncbi.nlm.nih.gov/pubmed/19673267 [9] Iglauer S, Pentland C, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015, 51(11):729-774 https://espace.curtin.edu.au/handle/20.500.11937/20032 [10] Chaudhary K, Bayani Cardenas M, Wolfe WW, et al. Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40(15):3878-3882 doi: 10.1002/grl.50658 [11] Tanino Y, Blunt MJ. Capillary trapping in sandstones and carbonates:Dependence on pore structure. Water Resources Research, 2012, 48(8):W08525 doi: 10.1029/2011WR011712/full#footer-citing [12] Moura M, Fiorentino EA, Måløy K, et al. Impact of sample geometry on the measurement of pressure-saturation curves:Experiments and simulations. Water Resources Research, 2015, 51(12):8900-8926 [13] Kimbrel EH, Herring AL, Armstrong RT, et al. Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. International Journal of Greenhouse Gas Control, 2015, 42:1-15 doi: 10.1016/j.ijggc.2015.07.011 [14] Chatzis I, Kuntamukkula M, Morrow N. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reservoir Engineering, 1988, 3(3):902-912 doi: 10.2118/13213-PA [15] El-Maghraby RM, Blunt MJ. Residual CO2 trapping in Indiana limestone. Environmental Science & Technology, 2012, 47(1):227-233 [16] Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. International Journal of Greenhouse Gas Control, 2014, 22:1-14 doi: 10.1016/j.ijggc.2013.12.018 [17] Niu B, Al-Menhali A, Krevor SC. The impact of reservoir conditions on the residual trapping of carbon dioxide in Berea sandstone. Water Resources Research, 2015, 51(4):2009-2029 doi: 10.1002/2014WR016441 [18] Zhang C, Oostrom M, Grate JW, et al. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environmental Science & Technology, 2011, 45(17):7581-7588 https://www.ncbi.nlm.nih.gov/pubmed/21774502 [19] Wang Y, Zhang C, Wei N, et al. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. Environmental Science & Technology, 2012, 47(1):212-218 [20] Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal Of Fluid Mechanics, 1988, 189:165-187 doi: 10.1017/S0022112088000953 [21] Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of geological carbon dioxide storage under in situ conditions. Geophysical Research Letters, 2013, 40(15):3915-3918 doi: 10.1002/grl.50771 [22] 武爱兵, 李铱, 常春等.不同成分盐水驱CO2.现代地质, 2014, 28(5):1061-1067 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQWu Aibing, Li Yi, Chang Chun, et al. The residual gas saturation of different components of saline flooding CO2. Geoscience, 2014, 28(5):1061-1067 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ [23] Kim Y, Wan J, Kneafsey TJ, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine:pore-scale studies in micromodels. Environmental Science & Technology, 2012, 46(8):4228-4235 http://www.ncbi.nlm.nih.gov/pubmed/22404561 [24] Chang C, Zhou Q, Kneafsey TJ, et al. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Advances in Water Resources, 2016, 92:142-158 doi: 10.1016/j.advwatres.2016.03.015 [25] Chang C, Zhou Q, Oostrom M, et al. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Advances in Water Resources, 2017, 100:14-25 doi: 10.1016/j.advwatres.2016.12.003 [26] Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016, 113(37):10251-10256 doi: 10.1073/pnas.1603387113 [27] Xu W, Ok JT, Xiao F, et al. Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Physics of Fluids, 2014, 26(10):093102 http://www.researchgate.net/profile/Xiaolong_Yin/publication/265852004_Effect_of_pore_geometry_and_interfacial_tension_on_water-oil_displacement_efficiency_in_oil-wet_microfluidic_porous_media_analogs/links/541f9d8b0cf241a65a1ab8ac.pdf?disableCoverPage=true [28] Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement:Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011, 25(8):3493-3505 https://www.researchgate.net/publication/241971473_Influence_of_Viscous_and_Capillary_Forces_on_Immiscible_Fluid_Displacement_Pore-Scale_Experimental_Study_in_a_Water-Wet_Micromodel_Demonstrating_Viscous_and_Capillary_Fingering?ev=auth_pub [29] Cottin C, Bodiguel H, Colin A. Influence of wetting conditions on drainage in porous media:A microfluidic study. Physical Review E, 2011, 84(2):026311 doi: 10.1103/PhysRevE.84.026311 [30] Raeesi B, Piri M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach. Journal of Hydrology, 2009, 376(3):337-352 http://www.sciencedirect.com/science/article/pii/S0022169409004442 [31] Liu H, Ju Y, Wang N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92(3):033306 doi: 10.1103/PhysRevE.92.033306 [32] Bandara U, Tartakovsky AM, Oostrom M, et al. Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Advances in Water Resources, 2013, 62:356-369 doi: 10.1016/j.advwatres.2013.09.014 [33] Raeini AQ, Bijeljic B, Blunt MJ. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 2015, 83:102-110 doi: 10.1016/j.advwatres.2015.05.008 [34] Ferrari A, Jimenez-Martinez J, Borgne TL, et al. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 2015, 51(3):1381-1400 doi: 10.1002/2014WR016384 [35] Ferrari A, Lunati I. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in Water Resources, 2013, 57:19-31 doi: 10.1016/j.advwatres.2013.03.005 [36] Greenshields C. OpenFOAM User Guide. Version 2.4. 0. OpenFOAM Foundation Ltd, 2015 [37] Batzle M, Wang Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11):1396-408 doi: 10.1190/1.1443207 [38] Wang S, Tokunaga TK. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands:Implications for geologic carbon sequestration in carbonate reservoirs. Environmental Science & Technology, 2015, 49 (13):7208-7217 http://www.ncbi.nlm.nih.gov/pubmed/26517749 [39] Abrãmoff MD, Magalhães PJ, Ram SJ. Image processing with Image J. Biophotonics International, 2004, 11(8):36-42 [40] Roman S, Soulaine C, AlSaud MA, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 2015, 95:199-211 https://www.researchgate.net/publication/282459814_Particle_Velocimetry_Analysis_of_Immiscible_Two-Phase_Flow_in_Micromodels [41] Horgue P, Augier F, Duru P, et al. Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 2013, 102(15):335-345 http://www.sciencedirect.com/science/article/pii/S0009250913005745 [42] Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media:Comparison with percolation theory. Water Resources Research, 2015, 51(11):9094-9111 doi: 10.1002/2015WR017852 [43] Mohammadian S, Geistlinger H, Vogel HJ. Quantification of gasphase trapping within the capillary fringe using computed microtomography. Vadose Zone Journal, 2015, 14(5): [44] Jimenez-Martínez J, Porter ML, Hyman JD, et al. Mixing in a threephase system:Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letter, 2016, 43(1):196-205 doi: 10.1002/2015GL066787 [45] Land CS. Calculation of imbibition relative permeability for twoand three-phase flow from rock properties. Society of Petroleum Engineers Journal, 1968, 8(2):149-156 doi: 10.2118/1942-PA [46] Jerauld G. General three-phase relative permeability model for Prudhoe Bay. SPE Reservoir Engineering, 1997, 12(04):255-263 doi: 10.2118/36178-PA [47] Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE Journal, 2008, 13(3):277-288 doi: 10.2118/96448-PA -