EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质壁面剪切湍流速度时空关联的研究

郑艺君 李庆祥 潘明 董宇红

郑艺君, 李庆祥, 潘明, 董宇红. 多孔介质壁面剪切湍流速度时空关联的研究[J]. 力学学报, 2016, 48(6): 1308-1318. doi: 10.6052/0459-1879-16-208
引用本文: 郑艺君, 李庆祥, 潘明, 董宇红. 多孔介质壁面剪切湍流速度时空关联的研究[J]. 力学学报, 2016, 48(6): 1308-1318. doi: 10.6052/0459-1879-16-208
Zheng Yijun, Li Qingxiang, Pan Ming, Dong Yuhong. SPACE-TIME CORRELATIONS OF FLUCTUATING VELOCTUATING IN POROUS WALL-BOUNDED TURBULENT SHEAR FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318. doi: 10.6052/0459-1879-16-208
Citation: Zheng Yijun, Li Qingxiang, Pan Ming, Dong Yuhong. SPACE-TIME CORRELATIONS OF FLUCTUATING VELOCTUATING IN POROUS WALL-BOUNDED TURBULENT SHEAR FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318. doi: 10.6052/0459-1879-16-208

多孔介质壁面剪切湍流速度时空关联的研究

doi: 10.6052/0459-1879-16-208
基金项目: 国家自然科学基金资助项目(11272198,11572183).
详细信息
    通讯作者:

    董宇红,教授,主要研究方向:湍流,多相流.E-mail:dongyh@sta.shu.edu.cn

  • 中图分类号: O357.5+2

SPACE-TIME CORRELATIONS OF FLUCTUATING VELOCTUATING IN POROUS WALL-BOUNDED TURBULENT SHEAR FLOWS

  • 摘要: 作为一个基础统计量,时空关联函数在湍流问题的研究中有着广泛的应用,是研究湍流噪声、湍流中物质扩散和大涡模拟亚格子模型等问题的重要参考.本文通过建立三维多孔结构壁面剪切湍流模型,采用含Darcy-Brinkman-Forchheimer作用力项的格子Boltzmann方程对无穷大多孔介质平行板之间壁湍流进行了数值模拟,进而研究其速度脉动时空关联函数的统计特性.一方面,根据计算得到的流场数据,对比分析了常规槽道湍流与多孔介质壁面槽道湍流的时间关联函数.另一方面,计算并讨论了不同孔隙率和渗透率的多孔介质壁面对速度脉动时空关联性的影响.通过研究表明:多孔结构壁面剪切湍流的时空关联函数等值线与椭圆理论相符;在研究参数范围内,多孔介质壁面的速度时空关联系数随着孔隙率增大而增大,随着渗透率增大而减小.同时发现在槽道壁面的近壁区、过渡区、对数律区和中心区等不同位置处,速度时空关联呈现较大差异性:越远离壁面位置(对数律区和中心区),其时空关联函数所呈现的关联等值线椭圆越细长,高值相关等值线越集中.多孔介质主要改变速度时空关联椭圆图像的椭圆率,说明多孔介质壁面主要影响湍流横扫速度.

     

  • 1 Dong YH, Sagaut P. A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence. Physics of Fluids, 2008, 20(3):035105  
    2 He GW,Wang M, Sanjiva K. On the computation of space-time correlations by large-eddy simulation. Physics of Fluids, 2003, 16(11):319-330
    3 Lighthill MJ. On sound generated areodynamically. I. General theory. Proceedings of the Royal Society of London, 1952, 211:564-587  
    4 Proudman I. The generation of sound by isotropic turbulence. Proceedings of the Royal Society of London, 1952, 211:119-132
    5 Kraichnan RH. The structure of turbulence at very high Reynolds number. Journal of Fluid Mechanics, 1959, 5(4):497-543  
    6 Orszag SA, Patterson GS. Numerical simulation of threedimensional homogeneous isotropic turbulence. Physical Review Letters, 1972, 28(2):76-79  
    7 Gotoh T, Rogallo RS, Herring JR. Lagrangian velocity correlations in homogeneous isotropic turbulence. Physics of Fluids A Fluid Dynamics, 1993, 5(11):2846-2864  
    8 He GW, Zhang J. Elliptic model for space-time correlations in turbulent shear flows. Physical Review E, 2006, 73(5):055303  
    9 Zhou Q, Li C, Lu Z, et al. Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Bénard convection. Journal of Fluid Mechanics, 2011, 683:94-111  
    10 Goldeferd FS, Favier B, Cambon C. On space-time correlations in turbulent shear flows. Physics of Fluid, 2010, 22:015101  
    11 Goldeferd FS, Favier B, Cambon C. Modeling the far-field acoustic emission of rotating turbulence. Journal of Turbulence, 2008, 9:1-21
    12 Chen H, Chen S, Matthaeus HW. Recovery of the Navier-Stokes equation using a lattice Boltzmann method. Phys. Rev, 1992, A 45:5339-5342  
    13 Raabe D. Overview of the lattice Boltzmann method for nanoscale and microscale fluid dynamics in materials science and engineering. Modelling and Simulation of Materials Science Engineering, 2004, 12:13-46  
    14 Tang G, Tao W, He Y. Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Physical Review E, 2005, 72(5):056301
    15 Guo ZL, Zhao TS. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 2002, 66(32B):036301
    16 Grunau D, Chen S, Eggert K. A lattice Boltzmann model for multiphase fluid-flows. Physics of Fluids, 1993, 5:2557-2562  
    17 Luo L. Theory of the lattice Boltzmann method:Lattice Boltzmann model for nonideal gases. Physical Review E, 2000, 62(4):4982  
    18 Chen S, Dawson SP, Doolen GD. Lattice methods and their applications to reacting systems. Computers and Chemical Engineering, 1995, 19:617-646  
    19 Rakotomalala N, Salin D, Watzky P. Simulations of viscous flows of complex fluids with a Bhatnagar, Gross and Krook lattice gas. Physics of Fluids, 1996, 8(11):3200-3202  
    20 Boek ES, Chin J, Coveney PV. Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media. International Journal of Modern Physics B, 2003, 17:99-102  
    21 Gabbanelli S, Drazer G, Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluid. Physical Review E, 2005, 72:046312  
    22 Ladd AJC, Verberg R. Lattice-Boltzmann simulation of particlefluid suspensions. Journal of Statistical Physics, 2001, 104:1191-1251  
    23 Chen SY, Chen HD, Martnez D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics. Physical Review Letters, 1991, 67(27):3776-3779  
    24 贝尔. 多孔介质流体动力学. 李竞生, 陈崇希, 译. 北京:中国建筑工业出版社, 1983(Bear. Dynamics of Fluids in Porous Media. Beijing:China Architecture & Building Press,1983(in Chinese))
    25 Tang Z, Liu N, Dong Y. Lattice Boltzmann simulations of turbulent shear flow between parallel porous walls. Applied Mathematics and Mechanics, 2014, 35:1479-1494  
    26 Qian YH, D'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6):479-484  
    27 Nithiarasu P, Seetharamu KN, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. International Journal of Heat & Mass Transfer, 1997, 40:3955-3967  
    28 Ergun S. Fluid flow through packed columns. Chemical Engineering Progress, 1952, 48:89-94
    29 Luo LS. Unified theory of lattice Boltzmann models for nonideal gases. Physical Review Letters, 1998, 81(8):1618-1621  
    30 He X,Shan X, Doolen Gary D. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 1998, 57(1):R13-R16  
    31 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用. 北京:科学出版社, 2009(Guo Zhaoli, Zheng Chuguang. Theory and Applications of Lattice Boltzmann Method. Beijng:Science Press. 2009(in Chinese))
    32 Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 1987, 177:133-166  
  • 加载中
计量
  • 文章访问数:  986
  • HTML全文浏览量:  85
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-25
  • 修回日期:  2016-09-01
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回