EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同加载状态下TA2钛合金绝热剪切破坏响应特性

周刚毅 董新龙 付应乾 虎宏智

周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. doi: 10.6052/0459-1879-16-198
引用本文: 周刚毅, 董新龙, 付应乾, 虎宏智. 不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361. doi: 10.6052/0459-1879-16-198
Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. doi: 10.6052/0459-1879-16-198
Citation: Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. doi: 10.6052/0459-1879-16-198

不同加载状态下TA2钛合金绝热剪切破坏响应特性

doi: 10.6052/0459-1879-16-198
基金项目: 国家自然科学基金(11172144)和NSAF联合基金(U1230122)资助项目.
详细信息
    通讯作者:

    董新龙,教授,主要研究方向:冲击动力学.E-mail:dongxinlong@nbu.edu.cn

  • 中图分类号: O347.3

AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION

  • 摘要: 一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digitalimage correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用“冻结”试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构“软化”特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.

     

  • 1 Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Applied Physics, 1944, 15:22-32  
    2 Bai Y, Dodd B. Adiabatic Shear Localization:Occurrence, Theories and Applications. New York:Pergamon Press, 1992:155-187
    3 Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. U.K:Cambridge University Press, 2002
    4 Dodd B, Bai Y. Adiabatic Shear Localization. Frontiers and Advances:Elsevier, London, 2012
    5 Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society, 1949, 62(11):676-700  
    6 赵峰,李玉龙,索涛等. 高应变率下铸造镁合金AZ91的动态压缩性能及破坏机理. 中国有色金属学报,2009, 19(7):1163-1168(Zhao Feng, Li Yulong, Suo Tao, et al. Dynamic compressive behavior and damage mechanism of cast magnesium alloy AZ91. The Chinese Journal of Nonferrous Metals, 2009, 19(7):1163-1168(in Chinese))
    7 Wei ZG, Yu JL, Li JR, et al. Influence of stress condition on adiabatic shear localization of tungsten heavy alloy. International Journal of Impact Engineering, 2001, 26:843-852  
    8 Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel. J Mech Phys Solids, 1988, 36(1):251-283
    9 Peirs J, Verleysen P, Tirry W, et al. Dynamic shear localization in Ti6A14V. Procedia Engineering, 2011(10):2342-2347  
    10 Meyer LW, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading. Mechanics of Materials, 1994, 17(2-3):203-214
    11 Hartmann KH, Kunze HD, Meyer LW. Metallurgical effects on impact loaded materials//Meyers MA, Murr LE eds. Shock Waves and High Strain Rate Phenomena in Metals, Concepts and Applications, New York:Plenum Press, 1981:325-337
    12 Rittel D, Wang ZG, Dorogoy A. Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008, 35:1280-1292  
    13 Bronkhorst CA, Cerreta EK, Xue Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel. International Journal of Plasticity, 2006, 22:1304-1335  
    14 Chen YJ, Meyers MA,Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999, 268:70-82  
    15 Kad BK, Gebert JM, Perez-Prado MT, et al. Ultrafine-grain-sized zirconium by dynamic deformation. Acta Materialia, 2006, 54:4111-4127  
    16 Peirs J, Verleyse P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6AL-4V. International Journal of Impact Engineering, 2010, 37:703-714  
    17 Lee WS, Chen TH, Lin CF, et al. Adiabatic shearing localisation in high strain rate deformation of Al-Sc alloy. Materials Transactions, 2010, 51(7):1216-1221  
    18 Teng X, Wierzbicki T, Couque H. On the transition from adiabatic shear banding to fracture. Mechanics of Materials, 2007(39):107-125  
    19 Andrade U, Meyer MA, Vecchio KS, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metallurgica et Materialia, 1994, 42(9):3183-3195  
    20 刘龙飞, 戴兰宏, 凌中等. 冲击剪切载荷下SiCp/6151Al复合材料变形局部化及增强颗粒尺寸效应. 复合材料学报,2002, 19(4):51-55(Liu Longfei, Dai Lanhong, Ling Zhong, et al. Localized deformation and particle size-effect in particle-rein forced SiCp/6151Al composites under impulsive shear loadings. Acta Materiae Compositae Sinica, 2002, 19(4):51-55(in Chinese))
    21 Clos R, Schreppel U, Veit P. Temperature, microstructure and mechanical response during shear band formation in different metallic materials. Journal de Physique, 2003, 110(4):111-116
    22 Liu LF, Dai LH, Bai YL, et al. Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. Journal of Non-Crystalline Solids, 2005(351):3259-3270  
    23 付应乾,董新龙,虎宏智. 准静态和动态加载TA2工业纯钛受迫剪切破坏演化. 中国有色金属学报, 2015, 25(11):3092-3099(Fu Yingqian, Dong Xinlong, Hu Hongzhi. Quasi-static and dynamic failure evolution of titanium alloy under forced shear loading. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3092-3099(in Chinese))
    24 许泽建, 丁晓燕, 张炜琪等. 一种用于材料高应变率剪切性能测试的新型加载技术. 力学学报, 2016, 48(1):654-659(Xu Zejian, Ding Xiaoyan, Zhang Weiqi, et al. A new loading technique for measuring shearing properties of materials under high strain rates. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):654-659(in Chinese))
    25 付应乾,董新龙. 工业纯钛动态压缩特性及破坏的实验研究. 稀有金属材料与工程, 2016, 45(1):102-106(Fu Yingqian, Dong Xinlong. Experiment study on mechanical properties and failure characteristic of commercially pure titanium under dynamic compression. Rare Metal Materials and Engineering, 2016, 45(1):102-106(in Chinese))
    26 付应乾,董新龙. 帽型试样动态绝热剪切破坏演化分析. 固体力学学报, 2015, 36(5):392-400(Fu Yingqian, Dong Xinlong. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading. Chinese Journal of Solid Mechanics, 2015, 36(5):392-400(in Chinese))
    27 Nemat-Nasser S, Isaaca JB, Liu MQ. Microstructure of high-strain, high-strain-rate deformed Tantalum. Acta Mater, 1998, 46(4):1307-1325  
    28 Pérez-Prado MT, Hines JA, Vecchio KS. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater, 2001, 49:2905-2917  
    29 皮萨林科ГC,列别捷夫AA. 复杂应力状态下的材料变形与强度, 江明行译. 北京:科学出版社,1983:32-34
    30 罗文波. 关于"平面纯剪切大变形等效应变分析" 一文的讨论. 塑形工程学报, 2001, 8(1):8-8(Luo Wenbo. Discussion on the equivalent strain of large plane-pure-shear defomaton. Journal of Plasticity Engineering, 2001, 8(1):8-8(in Chinese))
    31 Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of Mechanics Physics of Solids, 1987, 35(1):95-119  
  • 加载中
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  156
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-15
  • 修回日期:  2016-09-12
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回