EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-PRS并联机器人惯量耦合特性研究

王冬 吴军 王立平 刘辛军

王冬, 吴军, 王立平, 刘辛军. 3-PRS并联机器人惯量耦合特性研究[J]. 力学学报, 2016, 48(4): 804-812. doi: 10.6052/0459-1879-16-160
引用本文: 王冬, 吴军, 王立平, 刘辛军. 3-PRS并联机器人惯量耦合特性研究[J]. 力学学报, 2016, 48(4): 804-812. doi: 10.6052/0459-1879-16-160
Wang Dong, Wu Jun, Wang Liping, Liu Xinjun. RESEARCH ON THE INERTIA COUPLING PROPERTY OF A 3-PRS PARALLEL ROBOT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 804-812. doi: 10.6052/0459-1879-16-160
Citation: Wang Dong, Wu Jun, Wang Liping, Liu Xinjun. RESEARCH ON THE INERTIA COUPLING PROPERTY OF A 3-PRS PARALLEL ROBOT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 804-812. doi: 10.6052/0459-1879-16-160

3-PRS并联机器人惯量耦合特性研究

doi: 10.6052/0459-1879-16-160
基金项目: 国家自然科学基金(51225503) 和“高档数控机床与基础制造装备”科技重大专项(2013ZX04004021,2014ZX04002051) 资助项目.
详细信息
    通讯作者:

    刘辛军,教授,主要研究方向:并联机器人优化设计及控制.E-mail:xinjunliu@mail.tsinghua.edu.cn

  • 中图分类号: TH113

RESEARCH ON THE INERTIA COUPLING PROPERTY OF A 3-PRS PARALLEL ROBOT

  • 摘要: 惯量是影响机器人动态性能的主要因素,并联机器人因其多支链耦合的结构特点,关节空间各驱动轴出现惯量耦合的动力学特性,在高速、高加速度运动时易引起控制超调、振动等现象,破坏机器人的动态性能,因此研究并联机器人惯量耦合特性具有重要意义. 以3-PRS 并联机器人为例,通过虚功原理求得惯量矩阵,提出惯量耦合指标,该耦合指标表征了并联机器人在工作空间不同位姿时各驱动轴的耦合惯量大小,并给出了该耦合指标在机器人工作空间内的分布规律. 进一步在一台3-PRS 并联机器人样机上进行了实验验证,结果表明耦合惯量会改变驱动轴负载,负载的改变将最终影响动态性能. 同时各驱动轴的负载变化量随着惯量耦合指标的变大而变大,与理论分析有较好的一致性. 研究成果可帮助评价并联机器人的动力学耦合特性,并可用于并联机器人的结构参数优化及伺服参数调试以提高机器人的动态性能.

     

  • 1 Wu J, Wang JS, Wang LP, et al. Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy. Mechanism and Machine Theory, 2009, 44(4): 835-849  
    2 Gao Z, Zhang D. Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Transactions on Industrial Electronics, 2015, 62(1): 423-433  
    3 Wu J, Chen XM, Li TM, et al. Optimal design of a 2-DOF parallel manipulator with actuation redundancy considering kinematics and natural frequency. Robotics and Computer-Integrated Manufacturing, 2013, 29(1): 80-85  
    4 Xu QS. Design and development of a compact flexure-based XY precision positioning system with centimeter range. IEEE Transactions on Industrial Electronics, 2014, 61(2): 893-903  
    5 Ramadan AA, Takubo T, Mae Y, et al. Developmental process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for 3-D manipulation of microscopic objects. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1121-1135  
    6 Yao R, Tang XQ, Wang JS, et al. Dimensional optimization design of the four-cable-driven parallel manipulator in FAST. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 932-941
    7 Li YM, Xu QS. Design and development of a medical parallel robot for cardiopulmonary resuscitation. IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 265-273  
    8 Xu WL, Pap JS, Bronlund J. Design of a biologically inspired parallel robot for foods chewing. IEEE Transactions on Industrial Electronics, 2008, 55(2): 832-841  
    9 Xu WL, Torrance DJ, Chen BQ, et al. Kinematics and experiments of a life-sized masticatory robot for characterizing food texture. IEEE Transactions on Industrial Electronics, 2008, 55(5): 2121-2132  
    10 Pierrot F, Nabat V, Company O, et al. Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Transactions on Robotics, 2009, 25(2): 213-224  
    11 Bourbonnais F, Bigras P, Bonev IA. Minimum-time trajectory planning and control of a pick-and-place five-bar parallel robot. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 740-749  
    12 Wu J, Chen XL, Wang LP, et al. Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor. Nonlinear Dynamics, 2014, 78(1): 241-250  
    13 Zhang D, Gao Z. Optimal kinematic calibration of parallel manipulators with pseudoerror theory and cooperative coevolutionary network. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3221-3231  
    14 Xie FG, Liu XJ, Wang JS. A 3-DOF parallel manufacturing module and its kinematic optimization. Robotics and Computer-Integrated Manufacturing, 2012, 28(3): 334-343  
    15 Liu XJ, Li J, Zhou YH. Kinematic optimal design of a 2-degree-offreedom 3-parallelogram planar parallel manipulator. Mechanism and Machine Theory, 2015, 87: 1-17  
    16 Shiau TN, Tsai YJ, Tsai MS. Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects. Mechanism and Machine Theory, 2008, 43(1): 491-505
    17 Liu XF, Xu YD, Yao JT, et al. Control-faced dynamics with deformation compatibility for a 5-DOF active over-constrained spatial parallel manipulator 6PUS–UPU. Mechatronics, 2015, 30: 107-115  
    18 Zhang J, Zhao YQ. Elastodynamic modeling and joint reaction prediction for 3-PRS PKM. Journal of Central South University, 22(8): 2971-2979
    19 Shao ZF, Tang XT, Chen X, et al. Research on the inertia matching of the Stewart parallel manipulator. Robotics and Computer Integrated Manufacturing, 2012, 28(6): 649-659  
    20 Liu ZH, Tang XQ, Shao ZF, et al. Dimensional optimization of the Stewart platform based on inertia decoupling characteristic. Robotica, 2014: publish online
    21 Yang CF, Qu Z, Han J. Decoupled-space control and experimental evaluation of spatial electrohydraulic robotic manipulators using singular value decomposition algorithms. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3427-3438  
    22 何景峰, 叶正茂, 姜洪洲等. 基于关节空间模型的并联机器人耦合性分析. 机械工程学报, 2006, 42(6): 161-165 (He Jingfeng, Ye Zhengmao, Jiang Hongzhou, et al. Coupling analysis on joint-space model of parallel robot. Chinese Journal of Mechanical Engineering, 2006, 42(6): 161-165 (in Chinese))
    23 Yang CF, Han J. Dynamic coupling analysis of a spatial 6-DOF electro-hydraulic parallel manipulator using a modal decoupling method. International Journal of Advanced Robotic Systems, 2013, 10(104): 1-8
    24 Li QC, Chen Z, Chen QH, et al. Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements. Robotics and Computer-Integrated Manufacturing, 2011, 27(2): 389-396  
    25 Li YM, Xu QS. Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica, 2005, 23(2): 219-229  
    26 Carretero JA, Podhorodeski RP, Nahon MA, et al. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. Journal of Mechanical Design, 2000, 122(1): 17-24  
    27 刘海涛. 少自由度机器人机构一体化建模理论、方法及工程应用. [博士论文]. 天津:天津大学,2010(Liu Haitao. Unified parameter modeling of lower mobility robotic manipulators: theory, methodology and application. [PhD Thesis]. Tianjin: Tianjin University, 2010(in Chinese))
    28 Wu J, Wang D, Wang LP. A control strategy of a two degrees-offreedom heavy duty parallel manipulator. Journal of Dynamic Systems, Measurement and Control Transactions of the ASME, 2015, 37(6): 061007-1-061007-10
    29 Liu ZH, Tang XQ, Wang LP. Research on the dynamic coupling of the rigid-flexible manipulator. Robotics and Computer-Integrated Manufacturing, 2015, 32: 72-82  
    30 Dumlu A, Erenturk K. Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order PIλDμ control. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3417-3426  
  • 加载中
计量
  • 文章访问数:  648
  • HTML全文浏览量:  33
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回